Engineering Metallic Heterostructure Based on Ni3 N and 2M-MoS2 for Alkaline Water Electrolysis with Industry-Compatible Current Density and Stability
© 2022 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 9 vom: 21. März, Seite e2108505 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article active electronic states alkaline water electrolysis interface engineering large current density metallic heterostructures |
Zusammenfassung: | © 2022 Wiley-VCH GmbH. Alkaline water electrolysis is commercially desirable to realize large-scale hydrogen production. Although nonprecious catalysts exhibit high electrocatalytic activity at low current density (10-50 mA cm-2 ), it is still challenging to achieve industrially required current density over 500 mA cm-2 due to inefficient electron transport and competitive adsorption between hydroxyl and water. Herein, the authors design a novel metallic heterostructure based on nickel nitride and monoclinic molybdenum disulfide (Ni3 N2M-MoS2 ) for extraordinary water electrolysis. The Ni3 N@2M-MoS2 composite with heterointerface provides two kinds of separated reaction sites to overcome the steric hindrance of competitive hydroxyl/water adsorption. The kinetically decoupled hydroxyl/water adsorption/dissociation and metallic conductivity of Ni3 N@2M-MoS2 enable hydrogen production from Ni3 N and oxygen evolution from the heterointerface at large current density. The metallic heterostructure is proved to be imperative for the stabilization and activation of Ni3 N@2M-MoS2 , which can efficiently regulate the active electronic states of Ni/N atoms around the Fermi-level through the charge transfer between the active atoms of Ni3 N and MoMo bonds of 2M-MoS2 to boost overall water splitting. The Ni3 N@2M-MoS2 incorporated water electrolyzer requires ultralow cell voltage of 1.644 V@1000 mA cm-2 with ≈100% retention over 300 h, far exceeding the commercial Pt/C║RuO2 (2.41 V@1000 mA cm-2 , 100 h, 58.2%) |
---|---|
Beschreibung: | Date Revised 03.03.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202108505 |