Engineering Metallic Heterostructure Based on Ni3 N and 2M-MoS2 for Alkaline Water Electrolysis with Industry-Compatible Current Density and Stability

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 9 vom: 21. März, Seite e2108505
1. Verfasser: Wu, Tong (VerfasserIn)
Weitere Verfasser: Song, Erhong, Zhang, Shaoning, Luo, Mengjia, Zhao, Chendong, Zhao, Wei, Liu, Jianjun, Huang, Fuqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article active electronic states alkaline water electrolysis interface engineering large current density metallic heterostructures
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Alkaline water electrolysis is commercially desirable to realize large-scale hydrogen production. Although nonprecious catalysts exhibit high electrocatalytic activity at low current density (10-50 mA cm-2 ), it is still challenging to achieve industrially required current density over 500 mA cm-2  due to inefficient electron transport and competitive adsorption between hydroxyl and water. Herein, the authors design a novel metallic heterostructure based on nickel nitride and monoclinic molybdenum disulfide (Ni3 N2M-MoS2 ) for extraordinary water electrolysis. The Ni3 N@2M-MoS2  composite with heterointerface provides two kinds of separated reaction sites to overcome the steric hindrance of competitive hydroxyl/water adsorption. The kinetically decoupled hydroxyl/water adsorption/dissociation and metallic conductivity of Ni3 N@2M-MoS2  enable hydrogen production from Ni3 N and oxygen evolution from the heterointerface at large current density. The metallic heterostructure is proved to be imperative for the stabilization and activation of Ni3 N@2M-MoS2 , which can efficiently regulate the active electronic states of Ni/N atoms around the Fermi-level through the charge transfer between the active atoms of Ni3 N and MoMo bonds of 2M-MoS2  to boost overall water splitting. The Ni3 N@2M-MoS2  incorporated water electrolyzer requires ultralow cell voltage of 1.644 V@1000 mA cm-2  with ≈100% retention over 300 h, far exceeding the commercial Pt/C║RuO2 (2.41 V@1000 mA cm-2 , 100 h, 58.2%)
Beschreibung:Date Revised 03.03.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202108505