Defending Against Multiple and Unforeseen Adversarial Videos

Adversarial robustness of deep neural networks has been actively investigated. However, most existing defense approaches are limited to a specific type of adversarial perturbations. Specifically, they often fail to offer resistance to multiple attack types simultaneously, i.e., they lack multi-pertu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 29., Seite 962-973
1. Verfasser: Lo, Shao-Yuan (VerfasserIn)
Weitere Verfasser: Patel, Vishal M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM335010245
003 DE-627
005 20231225224915.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3137648  |2 doi 
028 5 2 |a pubmed24n1116.xml 
035 |a (DE-627)NLM335010245 
035 |a (NLM)34965207 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lo, Shao-Yuan  |e verfasserin  |4 aut 
245 1 0 |a Defending Against Multiple and Unforeseen Adversarial Videos 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Adversarial robustness of deep neural networks has been actively investigated. However, most existing defense approaches are limited to a specific type of adversarial perturbations. Specifically, they often fail to offer resistance to multiple attack types simultaneously, i.e., they lack multi-perturbation robustness. Furthermore, compared to image recognition problems, the adversarial robustness of video recognition models is relatively unexplored. While several studies have proposed how to generate adversarial videos, only a handful of approaches about defense strategies have been published in the literature. In this paper, we propose one of the first defense strategies against multiple types of adversarial videos for video recognition. The proposed method, referred to as MultiBN, performs adversarial training on multiple adversarial video types using multiple independent batch normalization (BN) layers with a learning-based BN selection module. With a multiple BN structure, each BN brach is responsible for learning the distribution of a single perturbation type and thus provides more precise distribution estimations. This mechanism benefits dealing with multiple perturbation types. The BN selection module detects the attack type of an input video and sends it to the corresponding BN branch, making MultiBN fully automatic and allowing end-to-end training. Compared to present adversarial training approaches, the proposed MultiBN exhibits stronger multi-perturbation robustness against different and even unforeseen adversarial video types, ranging from Lp-bounded attacks and physically realizable attacks. This holds true on different datasets and target models. Moreover, we conduct an extensive analysis to study the properties of the multiple BN structure 
650 4 |a Journal Article 
700 1 |a Patel, Vishal M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 29., Seite 962-973  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:29  |g pages:962-973 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3137648  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 29  |h 962-973