Cross-Linked Sodium Alginate-Sodium Borate Hybrid Binders for High-Capacity Silicon Anodes in Lithium-Ion Batteries

Silicon is considered one of the most promising next-generation anode materials for lithium-ion batteries. It has the advantages of high theoretical specific capacity (4200 mAh·g-1), which is 10 times larger than that of a commercial graphite anode (372 mAh·g-1). However, there are some problems suc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 1 vom: 11. Jan., Seite 402-410
1. Verfasser: Li, Jianbin (VerfasserIn)
Weitere Verfasser: Hu, Xianchao, Zhao, Hongshun, Ren, Yurong, Huang, Xiaobing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Silicon is considered one of the most promising next-generation anode materials for lithium-ion batteries. It has the advantages of high theoretical specific capacity (4200 mAh·g-1), which is 10 times larger than that of a commercial graphite anode (372 mAh·g-1). However, there are some problems such as the pulverization of the electrode and an unstable solid electrolyte interphase (SEI) layer aroused by the huge bulk effect (>300%) of Si during the repeated lithiation/delithiation process. A binder plays a vital role in the conventional lithium-ion batteries that can effectively relieve the bulk expansion stress of a silicon anode. In this work, the inorganic cross-linker sodium borate (SB) and the commonly used binder sodium alginate (SA) were condensed through an esterification reaction and the reaction product was marked as SA-SB. It is found that the mechanical robustness and the peel strength of SA-SB are improved after cross-linking, which is conducive to maintaining the structural stability of the silicon anode in long cycle life. In consequence, the capacity retention of the silicon anode using the SA-SB binder (64.1%) is higher than that of SA (50.6%) after 100 cycles at 0.2 A·g-1
Beschreibung:Date Revised 11.01.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02751