Machine Learning Guided Dopant Selection for Metal Oxide-Based Photoelectrochemical Water Splitting : The Case Study of Fe2 O3 and CuO

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 10 vom: 29. März, Seite e2106776
1. Verfasser: Wang, Zhiliang (VerfasserIn)
Weitere Verfasser: Gu, Yuang, Zheng, Lingxia, Hou, Jingwei, Zheng, Huajun, Sun, Shijing, Wang, Lianzhou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article doping strategy machine learning metal oxides photoelectrochemical water splitting selection criteria
LEADER 01000naa a22002652 4500
001 NLM335000088
003 DE-627
005 20231225224902.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202106776  |2 doi 
028 5 2 |a pubmed24n1116.xml 
035 |a (DE-627)NLM335000088 
035 |a (NLM)34964178 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Zhiliang  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning Guided Dopant Selection for Metal Oxide-Based Photoelectrochemical Water Splitting  |b The Case Study of Fe2 O3 and CuO 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Doping is an effective strategy for tuning metal oxide-based semiconductors for solar-driven photoelectrochemical (PEC) water splitting. Despite decades of extensive research effort, the dopant selection is still largely dependent on a trial-and-error approach. Machine learning (ML) is promising in providing predictable insights on the dopant selection for high-performing PEC systems because it can uncover correlations from the seemingly ambiguous linkages between vast features of dopants and the PEC performance of doped photoelectrodes. Herein, the authors successfully build ML model to predict the doping effect of 17 metal dopants into hematite (Fe2 O3 ), a prototype photoelectrode material. Their findings disclose the critical parameters from the 10 intrinsic features of each dopant. The model is further experimentally validated by the coherent prediction on Y and La dopants' behaviors. Further interpretation of the ML model suggests that the chemical state is the most significant selection criteria, meanwhile, dopants with higher metal-oxygen bond formation enthalpy and larger ionic radius are favored in improving the charge separation and transfer (CST) in the Fe2 O3 photoanodes. The generic feature of this ML guided selection criteria has been further extended to CuO-based photoelectrodes showing improved CST by alkaline metal ions doping 
650 4 |a Journal Article 
650 4 |a doping strategy 
650 4 |a machine learning 
650 4 |a metal oxides 
650 4 |a photoelectrochemical water splitting 
650 4 |a selection criteria 
700 1 |a Gu, Yuang  |e verfasserin  |4 aut 
700 1 |a Zheng, Lingxia  |e verfasserin  |4 aut 
700 1 |a Hou, Jingwei  |e verfasserin  |4 aut 
700 1 |a Zheng, Huajun  |e verfasserin  |4 aut 
700 1 |a Sun, Shijing  |e verfasserin  |4 aut 
700 1 |a Wang, Lianzhou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 10 vom: 29. März, Seite e2106776  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:10  |g day:29  |g month:03  |g pages:e2106776 
856 4 0 |u http://dx.doi.org/10.1002/adma.202106776  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 10  |b 29  |c 03  |h e2106776