Automated prediction of lattice parameters from X-ray powder diffraction patterns

© Sathya R. Chitturi et al. 2021.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 54(2021), Pt 6 vom: 01. Dez., Seite 1799-1810
1. Verfasser: Chitturi, Sathya R (VerfasserIn)
Weitere Verfasser: Ratner, Daniel, Walroth, Richard C, Thampy, Vivek, Reed, Evan J, Dunne, Mike, Tassone, Christopher J, Stone, Kevin H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article analysis automation indexing machine learning powder diffraction
LEADER 01000caa a22002652c 4500
001 NLM334996015
003 DE-627
005 20250302202626.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576721010840  |2 doi 
028 5 2 |a pubmed25n1116.xml 
035 |a (DE-627)NLM334996015 
035 |a (NLM)34963768 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chitturi, Sathya R  |e verfasserin  |4 aut 
245 1 0 |a Automated prediction of lattice parameters from X-ray powder diffraction patterns 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Sathya R. Chitturi et al. 2021. 
520 |a A key step in the analysis of powder X-ray diffraction (PXRD) data is the accurate determination of unit-cell lattice parameters. This step often requires significant human intervention and is a bottleneck that hinders efforts towards automated analysis. This work develops a series of one-dimensional convolutional neural networks (1D-CNNs) trained to provide lattice parameter estimates for each crystal system. A mean absolute percentage error of approximately 10% is achieved for each crystal system, which corresponds to a 100- to 1000-fold reduction in lattice parameter search space volume. The models learn from nearly one million crystal structures contained within the Inorganic Crystal Structure Database and the Cambridge Structural Database and, due to the nature of these two complimentary databases, the models generalize well across chemistries. A key component of this work is a systematic analysis of the effect of different realistic experimental non-idealities on model performance. It is found that the addition of impurity phases, baseline noise and peak broadening present the greatest challenges to learning, while zero-offset error and random intensity modulations have little effect. However, appropriate data modification schemes can be used to bolster model performance and yield reasonable predictions, even for data which simulate realistic experimental non-idealities. In order to obtain accurate results, a new approach is introduced which uses the initial machine learning estimates with existing iterative whole-pattern refinement schemes to tackle automated unit-cell solution 
650 4 |a Journal Article 
650 4 |a analysis automation 
650 4 |a indexing 
650 4 |a machine learning 
650 4 |a powder diffraction 
700 1 |a Ratner, Daniel  |e verfasserin  |4 aut 
700 1 |a Walroth, Richard C  |e verfasserin  |4 aut 
700 1 |a Thampy, Vivek  |e verfasserin  |4 aut 
700 1 |a Reed, Evan J  |e verfasserin  |4 aut 
700 1 |a Dunne, Mike  |e verfasserin  |4 aut 
700 1 |a Tassone, Christopher J  |e verfasserin  |4 aut 
700 1 |a Stone, Kevin H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 54(2021), Pt 6 vom: 01. Dez., Seite 1799-1810  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnas 
773 1 8 |g volume:54  |g year:2021  |g number:Pt 6  |g day:01  |g month:12  |g pages:1799-1810 
856 4 0 |u http://dx.doi.org/10.1107/S1600576721010840  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 54  |j 2021  |e Pt 6  |b 01  |c 12  |h 1799-1810