DeepPhaseCut : Deep Relaxation in Phase for Unsupervised Fourier Phase Retrieval

Fourier phase retrieval is a classical problem of restoring a signal only from the measured magnitude of its Fourier transform. Although Fienup-type algorithms, which use prior knowledge in both spatial and Fourier domains, have been widely used in practice, they can often stall in local minima. Con...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 03. Dez., Seite 9931-9943
Auteur principal: Cha, Eunju (Auteur)
Autres auteurs: Lee, Chanseok, Jang, Mooseok, Ye, Jong Chul
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
Description
Résumé:Fourier phase retrieval is a classical problem of restoring a signal only from the measured magnitude of its Fourier transform. Although Fienup-type algorithms, which use prior knowledge in both spatial and Fourier domains, have been widely used in practice, they can often stall in local minima. Convex relaxation methods such as PhaseLift and PhaseCut may offer performance guarantees, but these algorithms are usually computationally expensive for practical use. To address this problem, here we propose a novel unsupervised feed-forward neural network for Fourier phase retrieval which generates high quality reconstruction immediately. Unlike the existing deep learning approaches that use a neural network as a regularization term or an end-to-end blackbox model for supervised training, our algorithm is a feed-forward neural network implementation of physics-driven constraints in an unsupervised learning framework. Specifically, our network is composed of two generators: one for the phase estimation using PhaseCut loss, followed by another generator for image reconstruction, all of which are trained simultaneously without matched data. The link to the classical Fienup-type algorithms and the recent symmetry-breaking learning approach is also revealed. Extensive experiments demonstrate that the proposed method outperforms all existing approaches in Fourier phase retrieval problems
Description:Date Completed 09.11.2022
Date Revised 19.11.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2021.3138897