MutualNet : Adaptive ConvNet via Mutual Learning From Different Model Configurations

Most existing deep neural networks are static, which means they can only perform inference at a fixed complexity. But the resource budget can vary substantially across different devices. Even on a single device, the affordable budget can change with different scenarios, and repeatedly training netwo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 03. Jan., Seite 811-827
1. Verfasser: Yang, Taojiannan (VerfasserIn)
Weitere Verfasser: Zhu, Sijie, Mendieta, Matias, Wang, Pu, Balakrishnan, Ravikumar, Lee, Minwoo, Han, Tao, Shah, Mubarak, Chen, Chen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM334986974
003 DE-627
005 20231225224847.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3138389  |2 doi 
028 5 2 |a pubmed24n1116.xml 
035 |a (DE-627)NLM334986974 
035 |a (NLM)34962861 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Taojiannan  |e verfasserin  |4 aut 
245 1 0 |a MutualNet  |b Adaptive ConvNet via Mutual Learning From Different Model Configurations 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most existing deep neural networks are static, which means they can only perform inference at a fixed complexity. But the resource budget can vary substantially across different devices. Even on a single device, the affordable budget can change with different scenarios, and repeatedly training networks for each required budget would be incredibly expensive. Therefore, in this work, we propose a general method called MutualNet to train a single network that can run at a diverse set of resource constraints. Our method trains a cohort of model configurations with various network widths and input resolutions. This mutual learning scheme not only allows the model to run at different width-resolution configurations but also transfers the unique knowledge among these configurations, helping the model to learn stronger representations overall. MutualNet is a general training methodology that can be applied to various network structures (e.g., 2D networks: MobileNets, ResNet, 3D networks: SlowFast, X3D) and various tasks (e.g., image classification, object detection, segmentation, and action recognition), and is demonstrated to achieve consistent improvements on a variety of datasets. Since we only train the model once, it also greatly reduces the training cost compared to independently training several models. Surprisingly, MutualNet can also be used to significantly boost the performance of a single network, if dynamic resource constraints are not a concern. In summary, MutualNet is a unified method for both static and adaptive, 2D and 3D networks. Code and pre-trained models are available at https://github.com/taoyang1122/MutualNet 
650 4 |a Journal Article 
700 1 |a Zhu, Sijie  |e verfasserin  |4 aut 
700 1 |a Mendieta, Matias  |e verfasserin  |4 aut 
700 1 |a Wang, Pu  |e verfasserin  |4 aut 
700 1 |a Balakrishnan, Ravikumar  |e verfasserin  |4 aut 
700 1 |a Lee, Minwoo  |e verfasserin  |4 aut 
700 1 |a Han, Tao  |e verfasserin  |4 aut 
700 1 |a Shah, Mubarak  |e verfasserin  |4 aut 
700 1 |a Chen, Chen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 03. Jan., Seite 811-827  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:03  |g month:01  |g pages:811-827 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3138389  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 03  |c 01  |h 811-827