RGB-D fusion models for construction and demolition waste detection

Copyright © 2021 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 139(2022) vom: 15. Feb., Seite 96-104
1. Verfasser: Li, Jiantao (VerfasserIn)
Weitere Verfasser: Fang, Huaiying, Fan, Lulu, Yang, Jianhong, Ji, Tianchen, Chen, Qiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Accurate classification Construction and demolition waste Instance segmentation
LEADER 01000naa a22002652 4500
001 NLM334905575
003 DE-627
005 20231225224711.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2021.12.021  |2 doi 
028 5 2 |a pubmed24n1116.xml 
035 |a (DE-627)NLM334905575 
035 |a (NLM)34954663 
035 |a (PII)S0956-053X(21)00666-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jiantao  |e verfasserin  |4 aut 
245 1 0 |a RGB-D fusion models for construction and demolition waste detection 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.01.2022 
500 |a Date Revised 31.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2021 Elsevier Ltd. All rights reserved. 
520 |a The development of urbanization has brought a large amount of construction and demolition waste (CDW), which occupy land and cause adverse ecological effects. To effectively solve the negative impact of CDW, it needs to be recycled. Accurate waste classification is key to successful waste management. However, the current waste classification methods mainly use color images to classify, which cannot meet the needs of accurate classification. This paper built an RGB-depth (RGB-D) detection platform, using a color camera and a laser line-scanning sensor to collect RGB images and depth images. In order to use RGB images and depth images for feature fusion more effectively, this paper proposed three fusion models: RGB-D concat、RGB-D Ci-add and RGB-D Ci-concat. All these models based on an instance segmentation network called mask region convolutional neural network (Mask R-CNN), which can accurately segment the contours of each object while classifying them. The experimental results show that the mAPs of the RGB-D Ci-add / concat model are 1.33% to 1.72% higher than those of the RGB model, and the classification accuracy is 1.92% ∼ 2.27% higher. In addition, all the proposed models can meet the real-time requirement of online detection. Due to the excellent comprehensive performance of the RGB-D Ci-concat model, it can be regarded as the final detection model of the robot, which can improve the sorting efficiency of CDW further 
650 4 |a Journal Article 
650 4 |a Accurate classification 
650 4 |a Construction and demolition waste 
650 4 |a Instance segmentation 
700 1 |a Fang, Huaiying  |e verfasserin  |4 aut 
700 1 |a Fan, Lulu  |e verfasserin  |4 aut 
700 1 |a Yang, Jianhong  |e verfasserin  |4 aut 
700 1 |a Ji, Tianchen  |e verfasserin  |4 aut 
700 1 |a Chen, Qiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 139(2022) vom: 15. Feb., Seite 96-104  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnns 
773 1 8 |g volume:139  |g year:2022  |g day:15  |g month:02  |g pages:96-104 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2021.12.021  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 139  |j 2022  |b 15  |c 02  |h 96-104