|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM334892783 |
003 |
DE-627 |
005 |
20231225224656.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.wasman.2021.12.018
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1116.xml
|
035 |
|
|
|a (DE-627)NLM334892783
|
035 |
|
|
|a (NLM)34953380
|
035 |
|
|
|a (PII)S0956-053X(21)00663-2
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zayoud, Azd
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Pyrolysis of end-of-life polystyrene in a pilot-scale reactor
|b Maximizing styrene production
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 31.01.2022
|
500 |
|
|
|a Date Revised 31.01.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2021 Elsevier Ltd. All rights reserved.
|
520 |
|
|
|a Chemical recycling of polystyrene (PS) via pyrolysis is of great industrial, and academic interest, with styrene being the primary product of interest. To identify the optimal process conditions, the pyrolysis of end-of-life PS was studied in a pilot-scale unit consisting of an extruder, and a continuous stirred tank reactor (CSTR). The PS was pyrolyzed with continuous feeding at a pressure range from 0.02 to 1.0bara, and a temperature range from 450 to 600 °C, giving primarily styrene, other mono-aromatics, and oligomers. The comprehensive two-dimensional gas chromatography (GC × GC) coupled with flame ionization detector (FID), and time-of-flight mass spectrometer (ToF-MS) as well as GC with thermal conductivity detector (TCD) were used to characterize the liquid, and gaseous products exhaustively. The styrene yield increased from 36 wt% at 1.0bara, and 450 °C to 56 wt% at 0.02bara, and 550 °C. Working under a vacuum enhanced the styrene recovery at all corresponding temperature levels. The yield of benzene, toluene, ethylbenzene, and xylene (BTEX) increased from 4 wt% at 450 °C, and 0.02 bara to 17 wt% at 450 °C, and 1.0 bara. The experimental results have been used in a mathematical model that can explain the combined effect of temperature, and pressure on the yield of the primary products. The present work illustrates the potential of a continuous pyrolysis process for end-of-life PS, and paves the way for this technology to be rapidly transferred from mere laboratory use to industrial processes in the circular (petro-) chemical industry
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a CSTR
|
650 |
|
4 |
|a Continuous process
|
650 |
|
4 |
|a Mathematical optimization
|
650 |
|
4 |
|a Polystyrene
|
650 |
|
4 |
|a Pyrolysis
|
650 |
|
4 |
|a Waste plastic
|
650 |
|
7 |
|a Polystyrenes
|2 NLM
|
650 |
|
7 |
|a Xylenes
|2 NLM
|
650 |
|
7 |
|a Toluene
|2 NLM
|
650 |
|
7 |
|a 3FPU23BG52
|2 NLM
|
700 |
1 |
|
|a Dao Thi, Hang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kusenberg, Marvin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Eschenbacher, Andreas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kresovic, Uros
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Alderweireldt, Nick
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Djokic, Marko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Van Geem, Kevin M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Waste management (New York, N.Y.)
|d 1999
|g 139(2022) vom: 15. Feb., Seite 85-95
|w (DE-627)NLM098197061
|x 1879-2456
|7 nnns
|
773 |
1 |
8 |
|g volume:139
|g year:2022
|g day:15
|g month:02
|g pages:85-95
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.wasman.2021.12.018
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 139
|j 2022
|b 15
|c 02
|h 85-95
|