Disentangling Task-Oriented Representations for Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) aims to address the domain-shift problem between a labeled source domain and an unlabeled target domain. Many efforts have been made to eliminate the mismatch between the distributions of training and testing data by learning domain-invariant representations. How...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 24., Seite 1012-1026
1. Verfasser: Dai, Pingyang (VerfasserIn)
Weitere Verfasser: Chen, Peixian, Wu, Qiong, Hong, Xiaopeng, Ye, Qixiang, Tian, Qi, Lin, Chia-Wen, Ji, Rongrong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM334877407
003 DE-627
005 20231225224635.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3136615  |2 doi 
028 5 2 |a pubmed24n1116.xml 
035 |a (DE-627)NLM334877407 
035 |a (NLM)34951843 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dai, Pingyang  |e verfasserin  |4 aut 
245 1 0 |a Disentangling Task-Oriented Representations for Unsupervised Domain Adaptation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2022 
500 |a Date Revised 13.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised domain adaptation (UDA) aims to address the domain-shift problem between a labeled source domain and an unlabeled target domain. Many efforts have been made to eliminate the mismatch between the distributions of training and testing data by learning domain-invariant representations. However, the learned representations are usually not task-oriented, i.e., being class-discriminative and domain-transferable simultaneously. This drawback limits the flexibility of UDA in complicated open-set tasks where no labels are shared between domains. In this paper, we break the concept of task-orientation into task-relevance and task-irrelevance, and propose a dynamic task-oriented disentangling network (DTDN) to learn disentangled representations in an end-to-end fashion for UDA. The dynamic disentangling network effectively disentangles data representations into two components: the task-relevant ones embedding critical information associated with the task across domains, and the task-irrelevant ones with the remaining non-transferable or disturbing information. These two components are regularized by a group of task-specific objective functions across domains. Such regularization explicitly encourages disentangling and avoids the use of generative models or decoders. Experiments in complicated, open-set scenarios (retrieval tasks) and empirical benchmarks (classification tasks) demonstrate that the proposed method captures rich disentangled information and achieves superior performance 
650 4 |a Journal Article 
700 1 |a Chen, Peixian  |e verfasserin  |4 aut 
700 1 |a Wu, Qiong  |e verfasserin  |4 aut 
700 1 |a Hong, Xiaopeng  |e verfasserin  |4 aut 
700 1 |a Ye, Qixiang  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
700 1 |a Lin, Chia-Wen  |e verfasserin  |4 aut 
700 1 |a Ji, Rongrong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 24., Seite 1012-1026  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:24  |g pages:1012-1026 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3136615  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 24  |h 1012-1026