|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM334877385 |
003 |
DE-627 |
005 |
20250302201012.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2021.3136608
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1116.xml
|
035 |
|
|
|a (DE-627)NLM334877385
|
035 |
|
|
|a (NLM)34951841
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Niu, Yi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a NL-CALIC Soft Decoding Using Strict Constrained Wide-Activated Recurrent Residual Network
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 26.01.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In this work, we propose a normalized Tanh activate strategy and a lightweight wide-activate recurrent structure to solve three key challenges of the soft-decoding of near-lossless codes: 1. How to add an effective strict constrained peak absolute error (PAE) boundary to the network; 2. An end-to-end solution that is suitable for different quantization steps (compression ratios). 3. Simple structure that favors the GPU and FPGA implementation. To this end, we propose a Wide-activated Recurrent structure with a normalized Tanh activate strategy for Soft-Decoding (WRSD). Experiments demonstrate the effectiveness of the proposed WRSD technique that WRSD outperforms better than the state-of-the-art soft decoders with less than 5% number of parameters, and every computation node of WRSD requires less than 64KB storage for the parameters which can be easily cached by most of the current consumer-level GPUs. Source code is available at https://github.com/dota-109/WRSD
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, Chang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Mingming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Fu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Zhiwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Guangming
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 31(2022) vom: 01., Seite 1243-1257
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnas
|
773 |
1 |
8 |
|g volume:31
|g year:2022
|g day:01
|g pages:1243-1257
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2021.3136608
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2022
|b 01
|h 1243-1257
|