A Comprehensive Survey of Scene Graphs : Generation and Application

Scene graph is a structured representation of a scene that can clearly express the objects, attributes, and relationships between objects in the scene. As computer vision technology continues to develop, people are no longer satisfied with simply detecting and recognizing objects in images; instead,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 23. Jan., Seite 1-26
1. Verfasser: Chang, Xiaojun (VerfasserIn)
Weitere Verfasser: Ren, Pengzhen, Xu, Pengfei, Li, Zhihui, Chen, Xiaojiang, Hauptmann, Alex
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM334774136
003 DE-627
005 20231225224426.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3137605  |2 doi 
028 5 2 |a pubmed24n1115.xml 
035 |a (DE-627)NLM334774136 
035 |a (NLM)34941499 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
245 1 2 |a A Comprehensive Survey of Scene Graphs  |b Generation and Application 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Scene graph is a structured representation of a scene that can clearly express the objects, attributes, and relationships between objects in the scene. As computer vision technology continues to develop, people are no longer satisfied with simply detecting and recognizing objects in images; instead, people look forward to a higher level of understanding and reasoning about visual scenes. For example, given an image, we want to not only detect and recognize objects in the image, but also understand the relationship between objects (visual relationship detection), and generate a text description (image captioning) based on the image content. Alternatively, we might want the machine to tell us what the little girl in the image is doing (Visual Question Answering (VQA)), or even remove the dog from the image and find similar images (image editing and retrieval), etc. These tasks require a higher level of understanding and reasoning for image vision tasks. The scene graph is just such a powerful tool for scene understanding. Therefore, scene graphs have attracted the attention of a large number of researchers, and related research is often cross-modal, complex, and rapidly developing. However, no relatively systematic survey of scene graphs exists at present. To this end, this survey conducts a comprehensive investigation of the current scene graph research. More specifically, we first summarize the general definition of the scene graph, then conducte a comprehensive and systematic discussion on the generation method of the scene graph (SGG) and the SGG with the aid of prior knowledge. We then investigate the main applications of scene graphs and summarize the most commonly used datasets. Finally, we provide some insights into the future development of scene graphs 
650 4 |a Journal Article 
700 1 |a Ren, Pengzhen  |e verfasserin  |4 aut 
700 1 |a Xu, Pengfei  |e verfasserin  |4 aut 
700 1 |a Li, Zhihui  |e verfasserin  |4 aut 
700 1 |a Chen, Xiaojiang  |e verfasserin  |4 aut 
700 1 |a Hauptmann, Alex  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 1 vom: 23. Jan., Seite 1-26  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:1  |g day:23  |g month:01  |g pages:1-26 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3137605  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 1  |b 23  |c 01  |h 1-26