Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Classifiers

Adversarial attacks on machine learning-based classifiers, along with defense mechanisms, have been widely studied in the context of single-label classification problems. In this paper, we shift the attention to multi-label classification, where the availability of domain knowledge on the relationsh...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 23. Dez., Seite 9944-9959
1. Verfasser: Melacci, Stefano (VerfasserIn)
Weitere Verfasser: Ciravegna, Gabriele, Sotgiu, Angelo, Demontis, Ambra, Biggio, Battista, Gori, Marco, Roli, Fabio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM334774128
003 DE-627
005 20231225224426.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3137564  |2 doi 
028 5 2 |a pubmed24n1115.xml 
035 |a (DE-627)NLM334774128 
035 |a (NLM)34941498 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Melacci, Stefano  |e verfasserin  |4 aut 
245 1 0 |a Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Classifiers 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Adversarial attacks on machine learning-based classifiers, along with defense mechanisms, have been widely studied in the context of single-label classification problems. In this paper, we shift the attention to multi-label classification, where the availability of domain knowledge on the relationships among the considered classes may offer a natural way to spot incoherent predictions, i.e., predictions associated to adversarial examples lying outside of the training data distribution. We explore this intuition in a framework in which first-order logic knowledge is converted into constraints and injected into a semi-supervised learning problem. Within this setting, the constrained classifier learns to fulfill the domain knowledge over the marginal distribution, and can naturally reject samples with incoherent predictions. Even though our method does not exploit any knowledge of attacks during training, our experimental analysis surprisingly unveils that domain-knowledge constraints can help detect adversarial examples effectively, especially if such constraints are not known to the attacker. We show how to implement an adaptive attack exploiting knowledge of the constraints and, in a specifically-designed setting, we provide experimental comparisons with popular state-of-the-art attacks. We believe that our approach may provide a significant step towards designing more robust multi-label classifiers 
650 4 |a Journal Article 
700 1 |a Ciravegna, Gabriele  |e verfasserin  |4 aut 
700 1 |a Sotgiu, Angelo  |e verfasserin  |4 aut 
700 1 |a Demontis, Ambra  |e verfasserin  |4 aut 
700 1 |a Biggio, Battista  |e verfasserin  |4 aut 
700 1 |a Gori, Marco  |e verfasserin  |4 aut 
700 1 |a Roli, Fabio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 23. Dez., Seite 9944-9959  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:23  |g month:12  |g pages:9944-9959 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3137564  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 23  |c 12  |h 9944-9959