Hydration of TiO2 Facets Regulates As(III) Adsorption : DFT and DRIFTS Study

Hydration of TiO2 facets controls the reactions occurring at the mineral-water interfaces. However, the underlying mechanism of the facet-dependent hydration and the effect of hydration on contaminant adsorption are still ambiguous. Herein, arsenite [As(III)] adsorption on hydrated {001}, {100}, {10...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 1 vom: 11. Jan., Seite 275-281
1. Verfasser: Lu, Shaoyu (VerfasserIn)
Weitere Verfasser: Yan, Li, Zhong, Wen, Jing, Chuanyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Hydration of TiO2 facets controls the reactions occurring at the mineral-water interfaces. However, the underlying mechanism of the facet-dependent hydration and the effect of hydration on contaminant adsorption are still ambiguous. Herein, arsenite [As(III)] adsorption on hydrated {001}, {100}, {101}, and {201} TiO2 was explored by integrating multiple characterizations and density functional theory (DFT) calculations. Our macroscopic adsorption results show an As(III) adsorption density order of {201} > {100} > {101} > {001}, though As(III) on each facet formed a bidentate binuclear structure, as evidenced by the extended X-ray absorption fine structure analysis. The in situ diffuse reflectance infrared Fourier transform spectroscopy analysis identified distinctive surface hydroxyls on four-faceted TiO2 upon water adsorption. The hydrated surface regulated the subsequent As(III) adsorption, giving an As(III) adsorption energy order of {201} (-0.95 eV) < {100} (-0.38 eV) < {101} (-0.005 eV) < {001} (0.04 eV) according to DFT calculations. The As(III) adsorption energy on hydrated facets was linearly correlated with the macroscopical As(III) adsorption density (R2 = 0.99, p < 0.05), revealing that the impregnable water binding highly suppressed the exchange of As(III) molecules with adsorbed water. Our study provided a novel insight into the facet-dependent interfacial adsorption
Beschreibung:Date Revised 11.01.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02474