Assembly of Bioactive Nanoparticles via Metal-Phenolic Complexation

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 10 vom: 22. März, Seite e2108624
1. Verfasser: Chen, Jingqu (VerfasserIn)
Weitere Verfasser: Pan, Shuaijun, Zhou, Jiajing, Lin, Zhixing, Qu, Yijiao, Glab, Agata, Han, Yiyuan, Richardson, Joseph J, Caruso, Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article functional nanoparticles metal-organic materials particle engineering polyphenols supramolecular assembly Metals Phenols
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
The integration of bioactive materials (e.g., proteins and genes) into nanoparticles holds promise in fields ranging from catalysis to biomedicine. However, it is challenging to develop a simple and broadly applicable nanoparticle platform that can readily incorporate distinct biomacromolecules without affecting their intrinsic activity. Herein, a metal-phenolic assembly approach is presented whereby diverse functional nanoparticles can be readily assembled in water by combining various synthetic and natural building blocks, including poly(ethylene glycol), phenolic ligands, metal ions, and bioactive macromolecules. The assembly process is primarily mediated by metal-phenolic complexes through coordination and hydrophobic interactions, which yields uniform and spherical nanoparticles (mostly <200 nm), while preserving the function of the incorporated biomacromolecules (siRNA and five different proteins used). The functionality of the assembled nanoparticles is demonstrated through cancer cell apoptosis, RNA degradation, catalysis, and gene downregulation studies. Furthermore, the resulting nanoparticles can be used as building blocks for the secondary engineering of superstructures via templating and cross-linking with metal ions. The bioactivity and versatility of the platform can potentially be used for the streamlined and rational design of future bioactive materials
Beschreibung:Date Completed 31.03.2022
Date Revised 01.04.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202108624