SSL++ : Improving Self-Supervised Learning by Mitigating the Proxy Task-Specificity Problem

The success of deep convolutional networks (ConvNets) generally relies on a massive amount of well-labeled data, which is labor-intensive and time-consuming to collect and annotate in many scenarios. To eliminate such limitation, self-supervised learning (SSL) is recently proposed. Specifically, by...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 21., Seite 1134-1148
1. Verfasser: Chen, Song (VerfasserIn)
Weitere Verfasser: Xue, Jing-Hao, Chang, Jianlong, Zhang, Jianzhong, Yang, Jufeng, Tian, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The success of deep convolutional networks (ConvNets) generally relies on a massive amount of well-labeled data, which is labor-intensive and time-consuming to collect and annotate in many scenarios. To eliminate such limitation, self-supervised learning (SSL) is recently proposed. Specifically, by solving a pre-designed proxy task, SSL is capable of capturing general-purpose features without requiring human supervision. Existing efforts focus obsessively on designing a particular proxy task but ignore the semanticity of samples that are advantageous to downstream tasks, resulting in the inherent limitation that the learned features are specific to the proxy task, namely the proxy task-specificity of features. In this work, to improve the generalizability of features learned by existing SSL methods, we present a novel self-supervised framework SSL++ to incorporate the proxy task-independent semanticity of samples into the representation learning process. Technically, SSL++ aims to leverage the complementarity, between the low-level generic features learned by a proxy task and the high-level semantic features newly learned by the generated semantic pseudo-labels, to mitigate the task-specificity and improve the generalizability of features. Extensive experiments show that SSL++ performs favorably against the state-of-the-art approaches on the established and latest SSL benchmarks
Beschreibung:Date Completed 21.01.2022
Date Revised 21.01.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2021.3135470