Neural Reference Synthesis for Inter Frame Coding

This work proposes the neural reference synthesis (NRS) to generate high-fidelity reference block for motion estimation and motion compensation (MEMC) in inter frame coding. The NRS is comprised of two submodules: one for reconstruction enhancement and the other for reference generation. Although nu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 21., Seite 773-787
1. Verfasser: Ding, Dandan (VerfasserIn)
Weitere Verfasser: Gao, Xiang, Tang, Chenran, Ma, Zhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM334684803
003 DE-627
005 20231225224232.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3134465  |2 doi 
028 5 2 |a pubmed24n1115.xml 
035 |a (DE-627)NLM334684803 
035 |a (NLM)34932476 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ding, Dandan  |e verfasserin  |4 aut 
245 1 0 |a Neural Reference Synthesis for Inter Frame Coding 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This work proposes the neural reference synthesis (NRS) to generate high-fidelity reference block for motion estimation and motion compensation (MEMC) in inter frame coding. The NRS is comprised of two submodules: one for reconstruction enhancement and the other for reference generation. Although numerous methods have been developed in the past for these two submodules using either handcrafted rules or deep convolutional neural network (CNN) models, they basically deal with them separately, resulting in limited coding gains. By contrast, the NRS proposes to optimize them collaboratively. It first develops two CNN-based models, namely EnhNet and GenNet. The EnhNet only uses spatial correlations within the current frame for reconstruction enhancement and the GenNet is then augmented by further aggregating temporal correlations across multiple frames for reference synthesis. However, a direct concatenation of EnhNet and GenNet without considering the complex temporal reference dependency across inter frames would implicitly induce iterative CNN processing and cause the data overfitting problem, leading to visually-disturbing artifacts and oversmoothed pixels. To tackle this problem, the NRS applies a new training strategy to coordinate the EnhNet and GenNet for more robust and generalizable models, and also devises a lightweight multi-level R-D (rate-distortion) selection policy for the encoder to adaptively choose reference blocks generated from the proposed NRS model or conventional coding process. Our NRS not only offers state-of-the-art coding gains, e.g., >10% BD-Rate (Bjøntegaard Delta Rate) reduction against the High Efficiency Video Coding (HEVC) anchor for a variety of common test video sequences encoded at a wide bit range in both low-delay and random access settings, but also greatly reduces the complexity relative to existing learning-based methods by utilizing more lightweight DNNs. All models are made publicly accessible at https://github.com/IVC-Projects/NRS for reproducible research 
650 4 |a Journal Article 
700 1 |a Gao, Xiang  |e verfasserin  |4 aut 
700 1 |a Tang, Chenran  |e verfasserin  |4 aut 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 21., Seite 773-787  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:21  |g pages:773-787 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3134465  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 21  |h 773-787