|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM334684781 |
003 |
DE-627 |
005 |
20231225224232.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2021.3136921
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1115.xml
|
035 |
|
|
|a (DE-627)NLM334684781
|
035 |
|
|
|a (NLM)34932472
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Peng, Wei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Hyperbolic Deep Neural Networks
|b A Survey
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 09.11.2022
|
500 |
|
|
|a Date Revised 19.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Recently, hyperbolic deep neural networks (HDNNs) have been gaining momentum as the deep representations in the hyperbolic space provide high fidelity embeddings with few dimensions, especially for data possessing hierarchical structure. Such a hyperbolic neural architecture is quickly extended to different scientific fields, including natural language processing, single-cell RNA-sequence analysis, graph embedding, financial analysis, and computer vision. The promising results demonstrate its superior capability, significant compactness of the model, and a substantially better physical interpretability than its counterpart in the euclidean space. To stimulate future research, this paper presents a comprehensive review of the literature around the neural components in the construction of HDNN, as well as the generalization of the leading deep approaches to the hyperbolic space. It also presents current applications of various tasks, together with insightful observations and identifying open questions and promising future directions
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Varanka, Tuomas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mostafa, Abdelrahman
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Henglin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Guoying
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 44(2022), 12 vom: 21. Dez., Seite 10023-10044
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2022
|g number:12
|g day:21
|g month:12
|g pages:10023-10044
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2021.3136921
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2022
|e 12
|b 21
|c 12
|h 10023-10044
|