Hyperbolic Deep Neural Networks : A Survey

Recently, hyperbolic deep neural networks (HDNNs) have been gaining momentum as the deep representations in the hyperbolic space provide high fidelity embeddings with few dimensions, especially for data possessing hierarchical structure. Such a hyperbolic neural architecture is quickly extended to d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 21. Dez., Seite 10023-10044
1. Verfasser: Peng, Wei (VerfasserIn)
Weitere Verfasser: Varanka, Tuomas, Mostafa, Abdelrahman, Shi, Henglin, Zhao, Guoying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Review Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM334684781
003 DE-627
005 20231225224232.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3136921  |2 doi 
028 5 2 |a pubmed24n1115.xml 
035 |a (DE-627)NLM334684781 
035 |a (NLM)34932472 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peng, Wei  |e verfasserin  |4 aut 
245 1 0 |a Hyperbolic Deep Neural Networks  |b A Survey 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.11.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Recently, hyperbolic deep neural networks (HDNNs) have been gaining momentum as the deep representations in the hyperbolic space provide high fidelity embeddings with few dimensions, especially for data possessing hierarchical structure. Such a hyperbolic neural architecture is quickly extended to different scientific fields, including natural language processing, single-cell RNA-sequence analysis, graph embedding, financial analysis, and computer vision. The promising results demonstrate its superior capability, significant compactness of the model, and a substantially better physical interpretability than its counterpart in the euclidean space. To stimulate future research, this paper presents a comprehensive review of the literature around the neural components in the construction of HDNN, as well as the generalization of the leading deep approaches to the hyperbolic space. It also presents current applications of various tasks, together with insightful observations and identifying open questions and promising future directions 
650 4 |a Review 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Varanka, Tuomas  |e verfasserin  |4 aut 
700 1 |a Mostafa, Abdelrahman  |e verfasserin  |4 aut 
700 1 |a Shi, Henglin  |e verfasserin  |4 aut 
700 1 |a Zhao, Guoying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 21. Dez., Seite 10023-10044  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:21  |g month:12  |g pages:10023-10044 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3136921  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 21  |c 12  |h 10023-10044