Improved Normalized Cut for Multi-View Clustering

Spectral clustering (SC) algorithms have been successful in discovering meaningful patterns since they can group arbitrarily shaped data structures. Traditional SC approaches typically consist of two sequential stages, i.e., performing spectral decomposition of an affinity matrix and then rounding t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 21. Dez., Seite 10244-10251
1. Verfasser: Zhong, Guo (VerfasserIn)
Weitere Verfasser: Pun, Chi-Man
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM334684773
003 DE-627
005 20231225224232.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3136965  |2 doi 
028 5 2 |a pubmed24n1115.xml 
035 |a (DE-627)NLM334684773 
035 |a (NLM)34932473 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhong, Guo  |e verfasserin  |4 aut 
245 1 0 |a Improved Normalized Cut for Multi-View Clustering 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Spectral clustering (SC) algorithms have been successful in discovering meaningful patterns since they can group arbitrarily shaped data structures. Traditional SC approaches typically consist of two sequential stages, i.e., performing spectral decomposition of an affinity matrix and then rounding the relaxed continuous clustering result into a binary indicator matrix. However, such a two-stage process could make the obtained binary indicator matrix severely deviate from the ground true one. This is because the former step is not devoted to achieving an optimal clustering result. To alleviate this issue, this paper presents a general joint framework to simultaneously learn the optimal continuous and binary indicator matrices for multi-view clustering, which also has the ability to tackle the conventional single-view case. Specially, we provide theoretical proof for the proposed method. Furthermore, an effective alternate updating algorithm is developed to optimize the corresponding complex objective. A number of empirical results on different benchmark datasets demonstrate that the proposed method outperforms several state-of-the-arts in terms of six clustering metrics 
650 4 |a Journal Article 
700 1 |a Pun, Chi-Man  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 21. Dez., Seite 10244-10251  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:21  |g month:12  |g pages:10244-10251 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3136965  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 21  |c 12  |h 10244-10251