Bidirectional Mapping Coupled GAN for Generalized Zero-Shot Learning

Bidirectional mapping-based generalized zero-shot learning (GZSL) methods rely on the quality of synthesized features to recognize seen and unseen data. Therefore, learning a joint distribution of seen-unseen classes and preserving the distinction between seen-unseen classes is crucial for GZSL meth...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 20., Seite 721-733
Auteur principal: Shermin, Tasfia (Auteur)
Autres auteurs: Teng, Shyh Wei, Sohel, Ferdous, Murshed, Manzur, Lu, Guojun
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM334648424
003 DE-627
005 20250302194041.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3135480  |2 doi 
028 5 2 |a pubmed25n1115.xml 
035 |a (DE-627)NLM334648424 
035 |a (NLM)34928799 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shermin, Tasfia  |e verfasserin  |4 aut 
245 1 0 |a Bidirectional Mapping Coupled GAN for Generalized Zero-Shot Learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Bidirectional mapping-based generalized zero-shot learning (GZSL) methods rely on the quality of synthesized features to recognize seen and unseen data. Therefore, learning a joint distribution of seen-unseen classes and preserving the distinction between seen-unseen classes is crucial for GZSL methods. However, existing methods only learn the underlying distribution of seen data, although unseen class semantics are available in the GZSL problem setting. Most methods neglect retaining seen-unseen classes distinction and use the learned distribution to recognize seen and unseen data. Consequently, they do not perform well. In this work, we utilize the available unseen class semantics alongside seen class semantics and learn joint distribution through a strong visual-semantic coupling. We propose a bidirectional mapping coupled generative adversarial network (BMCoGAN) by extending the concept of the coupled generative adversarial network into a bidirectional mapping model. We further integrate a Wasserstein generative adversarial optimization to supervise the joint distribution learning. We design a loss optimization for retaining distinctive information of seen-unseen classes in the synthesized features and reducing bias towards seen classes, which pushes synthesized seen features towards real seen features and pulls synthesized unseen features away from real seen features. We evaluate BMCoGAN on benchmark datasets and demonstrate its superior performance against contemporary methods 
650 4 |a Journal Article 
700 1 |a Teng, Shyh Wei  |e verfasserin  |4 aut 
700 1 |a Sohel, Ferdous  |e verfasserin  |4 aut 
700 1 |a Murshed, Manzur  |e verfasserin  |4 aut 
700 1 |a Lu, Guojun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 20., Seite 721-733  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:20  |g pages:721-733 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3135480  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 20  |h 721-733