AutoEval : Are Labels Always Necessary for Classifier Accuracy Evaluation?
Understanding model decision under novel test scenarios is central to the community. A common practice is evaluating models on labeled test sets. However, many real-world scenarios see unlabeled test data, rendering the common supervised evaluation protocols infeasible. In this paper, we investigate...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 3 vom: 15. Feb., Seite 1868-1880 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |