Effect of Adsorbent Properties on Adsorption-Induced Deformation

Adsorption-induced adsorbent deformation is of fundamental importance to geoscientists and engineers. To gain insight into the deformation behaviors of different materials, we presented grand canonical Monte Carlo (GCMC) simulations of methane adsorption-induced deformation in slit pores. Adsorption...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 37(2021), 51 vom: 28. Dez., Seite 14813-14822
Auteur principal: Zou, Jie (Auteur)
Autres auteurs: Fan, Chunyan, Zhang, Junfang, Liu, Xiu, Zhou, Wen, Huang, Liang, Xu, Hao
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:Adsorption-induced adsorbent deformation is of fundamental importance to geoscientists and engineers. To gain insight into the deformation behaviors of different materials, we presented grand canonical Monte Carlo (GCMC) simulations of methane adsorption-induced deformation in slit pores. Adsorption isotherms and deformation behaviors of the pores were obtained for adsorbents with variations in solid density and affinity. The results showed that the adsorption-induced deformation depends on adsorbate loading, pore width, solid density, and affinity. The deformation at a given adsorption loading could be comparable between different solid densities or affinities because solid density or affinity is related to the solvation pressure as the driving force behind the deformation and also the resistance of the deformation. The interaction of these two effects controls the deformation behavior. We expect that our results will help to understand the adsorption-induced deformation in solids with heterogeneous properties and estimate deformation using the gas adsorption data
Description:Date Revised 28.12.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02512