Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO2 , warming, and drought

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 28(2022), 7 vom: 01. Apr., Seite 2425-2441
1. Verfasser: Maxwell, Tania L (VerfasserIn)
Weitere Verfasser: Canarini, Alberto, Bogdanovic, Ivana, Böckle, Theresa, Martin, Victoria, Noll, Lisa, Prommer, Judith, Séneca, Joana, Simon, Eva, Piepho, Hans-Peter, Herndl, Markus, Pötsch, Erich M, Kaiser, Christina, Richter, Andreas, Bahn, Michael, Wanek, Wolfgang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article T-FACE amino acid consumption climate warming drought elevated CO2 protein depolymerization soil nitrogen cycling Amino Acids Soil mehr... Carbon Dioxide 142M471B3J Nitrogen N762921K75
LEADER 01000caa a22002652c 4500
001 NLM334446074
003 DE-627
005 20250302191517.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16035  |2 doi 
028 5 2 |a pubmed25n1114.xml 
035 |a (DE-627)NLM334446074 
035 |a (NLM)34908205 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Maxwell, Tania L  |e verfasserin  |4 aut 
245 1 0 |a Contrasting drivers of belowground nitrogen cycling in a montane grassland exposed to a multifactorial global change experiment with elevated CO2 , warming, and drought 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.04.2022 
500 |a Date Revised 31.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Depolymerization of high-molecular weight organic nitrogen (N) represents the major bottleneck of soil N cycling and yet is poorly understood compared to the subsequent inorganic N processes. Given the importance of organic N cycling and the rise of global change, we investigated the responses of soil protein depolymerization and microbial amino acid consumption to increased temperature, elevated atmospheric CO2 , and drought. The study was conducted in a global change facility in a managed montane grassland in Austria, where elevated CO2 (eCO2 ) and elevated temperature (eT) were stimulated for 4 years, and were combined with a drought event. Gross protein depolymerization and microbial amino acid consumption rates (alongside with gross organic N mineralization and nitrification) were measured using 15 N isotope pool dilution techniques. Whereas eCO2  showed no individual effect, eT had distinct effects which were modulated by season, with a negative effect of eT on soil organic N process rates in spring, neutral effects in summer, and positive effects in fall. We attribute this to a combination of changes in substrate availability and seasonal temperature changes. Drought led to a doubling of organic N process rates, which returned to rates found under ambient conditions within 3 months after rewetting. Notably, we observed a shift in the control of soil protein depolymerization, from plant substrate controls under continuous environmental change drivers (eT and eCO2 ) to controls via microbial turnover and soil organic N availability under the pulse disturbance (drought). To the best of our knowledge, this is the first study which analyzed the individual versus combined effects of multiple global change factors and of seasonality on soil organic N processes and thereby strongly contributes to our understanding of terrestrial N cycling in a future world 
650 4 |a Journal Article 
650 4 |a T-FACE 
650 4 |a amino acid consumption 
650 4 |a climate warming 
650 4 |a drought 
650 4 |a elevated CO2 
650 4 |a protein depolymerization 
650 4 |a soil nitrogen cycling 
650 7 |a Amino Acids  |2 NLM 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Canarini, Alberto  |e verfasserin  |4 aut 
700 1 |a Bogdanovic, Ivana  |e verfasserin  |4 aut 
700 1 |a Böckle, Theresa  |e verfasserin  |4 aut 
700 1 |a Martin, Victoria  |e verfasserin  |4 aut 
700 1 |a Noll, Lisa  |e verfasserin  |4 aut 
700 1 |a Prommer, Judith  |e verfasserin  |4 aut 
700 1 |a Séneca, Joana  |e verfasserin  |4 aut 
700 1 |a Simon, Eva  |e verfasserin  |4 aut 
700 1 |a Piepho, Hans-Peter  |e verfasserin  |4 aut 
700 1 |a Herndl, Markus  |e verfasserin  |4 aut 
700 1 |a Pötsch, Erich M  |e verfasserin  |4 aut 
700 1 |a Kaiser, Christina  |e verfasserin  |4 aut 
700 1 |a Richter, Andreas  |e verfasserin  |4 aut 
700 1 |a Bahn, Michael  |e verfasserin  |4 aut 
700 1 |a Wanek, Wolfgang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 28(2022), 7 vom: 01. Apr., Seite 2425-2441  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:28  |g year:2022  |g number:7  |g day:01  |g month:04  |g pages:2425-2441 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16035  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 7  |b 01  |c 04  |h 2425-2441