Integrative proteomics and phosphoproteomics reveals phosphorylation networks involved in the maintenance and expression of embryogenic competence in sugarcane callus

Copyright © 2021 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 268(2022) vom: 07. Jan., Seite 153587
1. Verfasser: Xavier, Lucas R (VerfasserIn)
Weitere Verfasser: Almeida, Felipe A, Pinto, Vitor B, Passamani, Lucas Z, Santa-Catarina, Claudete, de Souza Filho, Gonçalo A, Mooney, Brian P, Thelen, Jay J, Silveira, Vanildo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Embryo development Label-free phosphoproteomies Somatic Embryogenesis Sugarcane Plant Proteins
Beschreibung
Zusammenfassung:Copyright © 2021 Elsevier GmbH. All rights reserved.
Plant embryogenic cell culture allows mass propagation and genetic manipulation, but the mechanisms that determine the fate of these totipotent cells in somatic embryos have not yet been elucidated. Here, we performed label-free quantitative proteomics and phosphoproteomics analyses to determine signaling events related to sugarcane somatic embryo differentiation, especially those related to protein phosphorylation. Embryogenic calli were compared at multiplication (EC0, dedifferentiated cells) and after 14 days of maturation (EC14, onset of embryo differentiation). Metabolic pathway analysis showed enriched lysine degradation and starch/sucrose metabolism proteins during multiplication, whereas the differentiation of somatic embryos was found to involve the enrichment of energy metabolism, including the TCA cycle and oxidative phosphorylation. Multiplication-related phosphoproteins were associated with transcriptional regulation, including SNF1 kinase homolog 10 (KIN10), SEUSS (SEU), and LEUNIG_HOMOLOG (LUH). The regulation of multiple light harvesting complex photosystem II proteins and phytochrome interacting factor 3-LIKE 5 were predicted to promote bioenergetic metabolism and carbon fixation during the maturation stage. A motif analysis revealed 15 phosphorylation motifs. The [D-pS/T-x-D] motif was overrepresented during somatic embryo differentiation. A protein-protein network analysis predicted interactions among SNF1-related protein kinase 2 (SnRK2), abscisic acid-responsive element-binding factor 2 (ABF2), and KIN10, which indicated the role of these proteins in embryogenic competence. The predicted interactions between TOPLESS (TPL) and histone deacetylase 19 (HD19) may be involved in posttranslational protein regulation during somatic embryo differentiation. These results reveal the protein regulation dynamics of somatic embryogenesis and new players in somatic embryo differentiation, including their predicted phosphorylation motifs and phosphosites
Beschreibung:Date Completed 17.01.2022
Date Revised 17.01.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2021.153587