Deep Hierarchical Representation of Point Cloud Videos via Spatio-Temporal Decomposition

In point cloud videos, point coordinates are irregular and unordered but point timestamps exhibit regularities and order. Grid-based networks for conventional video processing cannot be directly used to model raw point cloud videos. Therefore, in this work, we propose a point-based network that dire...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 14. Dez., Seite 9918-9930
1. Verfasser: Fan, Hehe (VerfasserIn)
Weitere Verfasser: Yu, Xin, Yang, Yi, Kankanhalli, Mohan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM334419123
003 DE-627
005 20231225223648.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3135117  |2 doi 
028 5 2 |a pubmed24n1114.xml 
035 |a (DE-627)NLM334419123 
035 |a (NLM)34905491 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan, Hehe  |e verfasserin  |4 aut 
245 1 0 |a Deep Hierarchical Representation of Point Cloud Videos via Spatio-Temporal Decomposition 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In point cloud videos, point coordinates are irregular and unordered but point timestamps exhibit regularities and order. Grid-based networks for conventional video processing cannot be directly used to model raw point cloud videos. Therefore, in this work, we propose a point-based network that directly handles raw point cloud videos. First, to preserve the spatio-temporal local structure of point cloud videos, we design a point tube covering a local range along spatial and temporal dimensions. By progressively subsampling frames and points and enlarging the spatial radius as the point features are fed into higher-level layers, the point tube can capture video structure in a spatio-temporally hierarchical manner. Second, to reduce the impact of the spatial irregularity on temporal modeling, we decompose space and time when extracting point tube representations. Specifically, a spatial operation is employed to encode the local structure of each spatial region in a tube and a temporal operation is used to encode the dynamics of the spatial regions along the tube. Empirically, the proposed network shows strong performance on 3D action recognition, 4D semantic segmentation and scene flow estimation. Theoretically, we analyse the necessity to decompose space and time in point cloud video modeling and why the network outperforms existing methods 
650 4 |a Journal Article 
700 1 |a Yu, Xin  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
700 1 |a Kankanhalli, Mohan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 14. Dez., Seite 9918-9930  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:14  |g month:12  |g pages:9918-9930 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3135117  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 14  |c 12  |h 9918-9930