Learning and Meshing from Deep Implicit Surface Networks Using an Efficient Implementation of Analytic Marching
Reconstruction of object or scene surfaces has tremendous applications in computer vision, computer graphics, and robotics. In this paper, we study a fundamental problem in this context about recovering a surface mesh from an implicit field function whose zero-level set captures the underlying surfa...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2021) vom: 14. Dez. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | Reconstruction of object or scene surfaces has tremendous applications in computer vision, computer graphics, and robotics. In this paper, we study a fundamental problem in this context about recovering a surface mesh from an implicit field function whose zero-level set captures the underlying surface. Given that an MLP with activations of Rectified Linear Unit (ReLU) partitions its input space into a number of linear regions, we are motivated to connect this local linearity with a same property owned by the desired result of polygon mesh. More specifically, we identify from the linear regions, partitioned by an MLP based implicit function, the analytic cells and analytic faces that are associated with the function's zero-level isosurface. We prove that under mild conditions, the identified analytic faces are guaranteed to connect and form a closed, piecewise planar surface. Based on the theorem, we propose an algorithm of analytic marching, which marches among analytic cells to exactly recover the mesh captured by an implicit surface network. We also show that our theory and algorithm are equally applicable to advanced MLPs with shortcut connections and max pooling. Extensive experiments demonstrate our advantages over existing methods in terms of both meshing accuracy and efficiency |
---|---|
Beschreibung: | Date Revised 20.02.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2021.3135007 |