Controllable Droplet Ejection of Multiple Reagents through Focused Acoustic Beams

Acoustic droplet ejection (ADE) technology has revolutionized fluid handling with its contactless and fast fluid transfer. For precise droplet ejection and stable droplet coalescence at the target substrates for further detection, the input power of the ADE system needs to be adjusted. Currently, th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 51 vom: 28. Dez., Seite 14805-14812
1. Verfasser: Guo, Qing (VerfasserIn)
Weitere Verfasser: Shao, Mengchuan, Su, Xiao, Zhang, Xingguo, Yu, Haixia, Li, Dachao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Acoustic droplet ejection (ADE) technology has revolutionized fluid handling with its contactless and fast fluid transfer. For precise droplet ejection and stable droplet coalescence at the target substrates for further detection, the input power of the ADE system needs to be adjusted. Currently, the existing power control method depends on scanning the source fluid wells one by one, which cannot afford precise and highly efficient droplet velocity adjustment, and the complicated operation caused by the repeated power evaluation processes for thousands of fluid transfers will waste much time. We propose a new method, which realizes the controllable ejection of multiple reagents by analyzing the effect of the product of kinematic viscosity and surface tension of the reagents on the droplet initial velocity. The experimental results obtained by ejecting dimethyl sulfoxide coincide well with the predicted results, and the relative error in the droplet initial velocity is mostly less than 8%. On the basis of the input power prediction method proposed in this paper, the ADE system is successfully constructed for continuous dispensing of polystyrene microspheres as cell surrogates, which provided an advanced liquid handling solution for research in biochemistry and other fields
Beschreibung:Date Revised 28.12.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02450