A Hybrid Semi-Lagrangian Cut Cell Method for Advection-Diffusion Problems with Robin Boundary Conditions in Moving Domains

We present a new discretization approach to advection-diffusion problems with Robin boundary conditions on complex, time-dependent domains. The method is based on second order cut cell finite volume methods introduced by Bochkov et al. [8] to discretize the Laplace operator and Robin boundary condit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 449(2022) vom: 15. Jan.
1. Verfasser: Barrett, Aaron (VerfasserIn)
Weitere Verfasser: Fogelson, Aaron L, Griffith, Boyce E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Cartesian grid method Irregular domain Level set method Robin boundary condition
LEADER 01000naa a22002652 4500
001 NLM33435188X
003 DE-627
005 20231225223528.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2021.110805  |2 doi 
028 5 2 |a pubmed24n1114.xml 
035 |a (DE-627)NLM33435188X 
035 |a (NLM)34898720 
035 |a (PII)110805 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Barrett, Aaron  |e verfasserin  |4 aut 
245 1 2 |a A Hybrid Semi-Lagrangian Cut Cell Method for Advection-Diffusion Problems with Robin Boundary Conditions in Moving Domains 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.01.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a new discretization approach to advection-diffusion problems with Robin boundary conditions on complex, time-dependent domains. The method is based on second order cut cell finite volume methods introduced by Bochkov et al. [8] to discretize the Laplace operator and Robin boundary condition. To overcome the small cell problem, we use a splitting scheme along with a semi-Lagrangian method to treat advection. We demonstrate second order accuracy in the L 1, L 2, and L ∞ norms for both analytic test problems and numerical convergence studies. We also demonstrate the ability of the scheme to convert one chemical species to another across a moving boundary 
650 4 |a Journal Article 
650 4 |a Cartesian grid method 
650 4 |a Irregular domain 
650 4 |a Level set method 
650 4 |a Robin boundary condition 
700 1 |a Fogelson, Aaron L  |e verfasserin  |4 aut 
700 1 |a Griffith, Boyce E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 449(2022) vom: 15. Jan.  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:449  |g year:2022  |g day:15  |g month:01 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2021.110805  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 449  |j 2022  |b 15  |c 01