MobileSal : Extremely Efficient RGB-D Salient Object Detection

The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this article introduces a novel network, MobileSal, which focuses on efficient RGB-D SOD using mobile networks for deep feature extrac...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 12 vom: 13. Dez., Seite 10261-10269
1. Verfasser: Wu, Yu-Huan (VerfasserIn)
Weitere Verfasser: Liu, Yun, Xu, Jun, Bian, Jia-Wang, Gu, Yu-Chao, Cheng, Ming-Ming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM334349036
003 DE-627
005 20231225223524.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3134684  |2 doi 
028 5 2 |a pubmed24n1114.xml 
035 |a (DE-627)NLM334349036 
035 |a (NLM)34898430 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Yu-Huan  |e verfasserin  |4 aut 
245 1 0 |a MobileSal  |b Extremely Efficient RGB-D Salient Object Detection 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.11.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this article introduces a novel network, MobileSal, which focuses on efficient RGB-D SOD using mobile networks for deep feature extraction. However, mobile networks are less powerful in feature representation than cumbersome networks. To this end, we observe that the depth information of color images can strengthen the feature representation related to SOD if leveraged properly. Therefore, we propose an implicit depth restoration (IDR) technique to strengthen the mobile networks' feature representation capability for RGB-D SOD. IDR is only adopted in the training phase and is omitted during testing, so it is computationally free. Besides, we propose compact pyramid refinement (CPR) for efficient multi-level feature aggregation to derive salient objects with clear boundaries. With IDR and CPR incorporated, MobileSal performs favorably against state-of-the-art methods on six challenging RGB-D SOD datasets with much faster speed (450fps for the input size of 320×320) and fewer parameters (6.5M). The code is released at https://mmcheng.net/mobilesal 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Yun  |e verfasserin  |4 aut 
700 1 |a Xu, Jun  |e verfasserin  |4 aut 
700 1 |a Bian, Jia-Wang  |e verfasserin  |4 aut 
700 1 |a Gu, Yu-Chao  |e verfasserin  |4 aut 
700 1 |a Cheng, Ming-Ming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 12 vom: 13. Dez., Seite 10261-10269  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:12  |g day:13  |g month:12  |g pages:10261-10269 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3134684  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 12  |b 13  |c 12  |h 10261-10269