Dietary influence on modulation of Helicoverpa armigera oral secretion composition leading to differential regulation of tomato plant defense

Copyright © 2021 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 314(2022) vom: 11. Jan., Seite 111120
1. Verfasser: Kallure, Gopal S (VerfasserIn)
Weitere Verfasser: Shinde, Balkrishna A, Barvkar, Vitthal T, Kumari, Archana, Giri, Ashok P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Chlorogenic acid Defense Metabolites Non-host Oral secretion Trehalose
Beschreibung
Zusammenfassung:Copyright © 2021 Elsevier B.V. All rights reserved.
Little is known about how different plant-based diets influence the insect herbivores' oral secretion (OS) composition and eventually the plant defense responses. We analyzed the OS composition of the generalist Lepidopteran insect, Helicoverpa armigera feeding on the host plant tomato (OSH), non-host plant capsicum (OSNH), and artificial diet (OSAD) using Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry. Higher numbers and levels of alkaloids and terpenoids were observed in OSH and OSNH, respectively while OSAD was rich in phospholipids. Interestingly, treatment of H. armigera OSAD, OSH and OSNH on wounded tomato leaves showed differential expression of (i) genes involved in JA and SA biosynthesis and their responsive genes, and (ii) biosynthetic pathway genes of chlorogenic acid (CGA) and trehalose, which exhibited increased accumulation along with several other plant defensive metabolites. Specifically, high levels of CGA were detected after OSH and OSNH treatments in tomato leaves. There was higher expression of the genes involved in phenylpropanoid biosynthesis, which may lead to the increased accumulation of CGA and related metabolites. In the insect bioassay, CGA significantly inhibited H. armigera larval growth. Our results underline the differential accumulation of plant and insect OS metabolites and identified potential plant metabolite(s) affecting insect growth and development
Beschreibung:Date Completed 21.12.2021
Date Revised 07.12.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2259
DOI:10.1016/j.plantsci.2021.111120