Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 9 vom: 01. März, Seite e2107850
1. Verfasser: Du, Tian (VerfasserIn)
Weitere Verfasser: Macdonald, Thomas J, Yang, Ruo Xi, Li, Meng, Jiang, Zhongyao, Mohan, Lokeshwari, Xu, Weidong, Su, Zhenhuang, Gao, Xingyu, Whiteley, Richard, Lin, Chieh-Ting, Min, Ganghong, Haque, Saif A, Durrant, James R, Persson, Kristin A, McLachlan, Martyn A, Briscoe, Joe
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article additive-free aerosol-assisted crystallization formamidinium lead triiodide stability strain
LEADER 01000caa a22002652c 4500
001 NLM334306590
003 DE-627
005 20250302185710.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202107850  |2 doi 
028 5 2 |a pubmed25n1114.xml 
035 |a (DE-627)NLM334306590 
035 |a (NLM)34894160 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Du, Tian  |e verfasserin  |4 aut 
245 1 0 |a Additive-Free, Low-Temperature Crystallization of Stable α-FAPbI3 Perovskite 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.03.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Formamidinium lead triiodide (FAPbI3 ) is attractive for photovoltaic devices due to its optimal bandgap at around 1.45 eV and improved thermal stability compared with methylammonium-based perovskites. Crystallization of phase-pure α-FAPbI3 conventionally requires high-temperature thermal annealing at 150 °C whilst the obtained α-FAPbI3 is metastable at room temperature. Here, aerosol-assisted crystallization (AAC) is reported, which converts yellow δ-FAPbI3 into black α-FAPbI3 at only 100 °C using precursor solutions containing only lead iodide and formamidinium iodide with no chemical additives. The obtained α-FAPbI3 exhibits remarkably enhanced stability compared to the 150 °C annealed counterparts, in combination with improvements in film crystallinity and photoluminescence yield. Using X-ray diffraction, X-ray scattering, and density functional theory simulation, it is identified that relaxation of residual tensile strains, achieved through the lower annealing temperature and post-crystallization crystal growth during AAC, is the key factor that facilitates the formation of phase-stable α-FAPbI3 . This overcomes the strain-induced lattice expansion that is known to cause the metastability of α-FAPbI3 . Accordingly, pure FAPbI3 p-i-n solar cells are reported, facilitated by the low-temperature (≤100 °C) AAC processing, which demonstrates increases of both power conversion efficiency and operational stability compared to devices fabricated using 150 °C annealed films 
650 4 |a Journal Article 
650 4 |a additive-free 
650 4 |a aerosol-assisted crystallization 
650 4 |a formamidinium lead triiodide 
650 4 |a stability 
650 4 |a strain 
700 1 |a Macdonald, Thomas J  |e verfasserin  |4 aut 
700 1 |a Yang, Ruo Xi  |e verfasserin  |4 aut 
700 1 |a Li, Meng  |e verfasserin  |4 aut 
700 1 |a Jiang, Zhongyao  |e verfasserin  |4 aut 
700 1 |a Mohan, Lokeshwari  |e verfasserin  |4 aut 
700 1 |a Xu, Weidong  |e verfasserin  |4 aut 
700 1 |a Su, Zhenhuang  |e verfasserin  |4 aut 
700 1 |a Gao, Xingyu  |e verfasserin  |4 aut 
700 1 |a Whiteley, Richard  |e verfasserin  |4 aut 
700 1 |a Lin, Chieh-Ting  |e verfasserin  |4 aut 
700 1 |a Min, Ganghong  |e verfasserin  |4 aut 
700 1 |a Haque, Saif A  |e verfasserin  |4 aut 
700 1 |a Durrant, James R  |e verfasserin  |4 aut 
700 1 |a Persson, Kristin A  |e verfasserin  |4 aut 
700 1 |a McLachlan, Martyn A  |e verfasserin  |4 aut 
700 1 |a Briscoe, Joe  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 9 vom: 01. März, Seite e2107850  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:34  |g year:2022  |g number:9  |g day:01  |g month:03  |g pages:e2107850 
856 4 0 |u http://dx.doi.org/10.1002/adma.202107850  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 9  |b 01  |c 03  |h e2107850