Fast Parameter-Free Multi-View Subspace Clustering With Consensus Anchor Guidance

Multi-view subspace clustering has attracted intensive attention to effectively fuse multi-view information by exploring appropriate graph structures. Although existing works have made impressive progress in clustering performance, most of them suffer from the cubic time complexity which could preve...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 02., Seite 556-568
1. Verfasser: Wang, Siwei (VerfasserIn)
Weitere Verfasser: Liu, Xinwang, Zhu, Xinzhong, Zhang, Pei, Zhang, Yi, Gao, Feng, Zhu, En
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM334268575
003 DE-627
005 20231225223342.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3131941  |2 doi 
028 5 2 |a pubmed24n1114.xml 
035 |a (DE-627)NLM334268575 
035 |a (NLM)34890327 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Siwei  |e verfasserin  |4 aut 
245 1 0 |a Fast Parameter-Free Multi-View Subspace Clustering With Consensus Anchor Guidance 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-view subspace clustering has attracted intensive attention to effectively fuse multi-view information by exploring appropriate graph structures. Although existing works have made impressive progress in clustering performance, most of them suffer from the cubic time complexity which could prevent them from being efficiently applied into large-scale applications. To improve the efficiency, anchor sampling mechanism has been proposed to select vital landmarks to represent the whole data. However, existing anchor selecting usually follows the heuristic sampling strategy, e.g. k -means or uniform sampling. As a result, the procedures of anchor selecting and subsequent subspace graph construction are separated from each other which may adversely affect clustering performance. Moreover, the involved hyper-parameters further limit the application of traditional algorithms. To address these issues, we propose a novel subspace clustering method termed Fast Parameter-free Multi-view Subspace Clustering with Consensus Anchor Guidance (FPMVS-CAG). Firstly, we jointly conduct anchor selection and subspace graph construction into a unified optimization formulation. By this way, the two processes can be negotiated with each other to promote clustering quality. Moreover, our proposed FPMVS-CAG is proved to have linear time complexity with respect to the sample number. In addition, FPMVS-CAG can automatically learn an optimal anchor subspace graph without any extra hyper-parameters. Extensive experimental results on various benchmark datasets demonstrate the effectiveness and efficiency of the proposed method against the existing state-of-the-art multi-view subspace clustering competitors. These merits make FPMVS-CAG more suitable for large-scale subspace clustering. The code of FPMVS-CAG is publicly available at https://github.com/wangsiwei2010/FPMVS-CAG 
650 4 |a Journal Article 
700 1 |a Liu, Xinwang  |e verfasserin  |4 aut 
700 1 |a Zhu, Xinzhong  |e verfasserin  |4 aut 
700 1 |a Zhang, Pei  |e verfasserin  |4 aut 
700 1 |a Zhang, Yi  |e verfasserin  |4 aut 
700 1 |a Gao, Feng  |e verfasserin  |4 aut 
700 1 |a Zhu, En  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 02., Seite 556-568  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:02  |g pages:556-568 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3131941  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 02  |h 556-568