|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM33426619X |
003 |
DE-627 |
005 |
20250302185221.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202107892
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1114.xml
|
035 |
|
|
|a (DE-627)NLM33426619X
|
035 |
|
|
|a (NLM)34890082
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kilic, Tugba
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Zwitterionic Polymer Electroplating Facilitates the Preparation of Electrode Surfaces for Biosensing
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.03.2022
|
500 |
|
|
|a Date Revised 24.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Surface chemistry critically affects the diagnostic performance of biosensors. An ideal sensor surface should be resistant to nonspecific protein adsorption, yet be conducive to analytical responses. Here a new polymeric material, zwitterionic polypyrrole (ZiPPy), is reported to produce optimal surface condition for biosensing electrodes. ZiPPy combines two unique advantages: the zwitterionic function that efficiently hydrates electrode surface, hindering nonspecific binding of hydrophobic proteins; and the pyrrole backbone, which enables rapid (<7 min), controlled deposition of ZiPPy through electropolymerization. ZiPPy-coated electrodes show lower electrochemical impedance and less nonspecific protein adsorption (low fouling), outperforming bare and polypyrrole-coated electrodes. Moreover, affinity ligands for target biomarkers can be immobilized together with ZiPPy in a single-step electropolymerization. ZiPPy-coated electrodes are developed with specificity for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prepared sensor detects SARS-CoV-2 antibodies in human saliva down to 50 ng mL-1 , without the need for sample purification or secondary labeling
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a SARS-CoV-2
|
650 |
|
4 |
|a electrochemical impedance spectroscopy
|
650 |
|
4 |
|a electropolymerization
|
650 |
|
4 |
|a saliva analysis
|
650 |
|
4 |
|a zwitterionic polymers
|
650 |
|
7 |
|a Antibodies, Viral
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a Pyrroles
|2 NLM
|
650 |
|
7 |
|a polypyrrole
|2 NLM
|
650 |
|
7 |
|a 30604-81-0
|2 NLM
|
650 |
|
7 |
|a Gold
|2 NLM
|
650 |
|
7 |
|a 7440-57-5
|2 NLM
|
700 |
1 |
|
|a Gessner, Isabel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cho, Young Kwan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jeong, Naebong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Quintana, Jeremy
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Weissleder, Ralph
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Hakho
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 8 vom: 01. Feb., Seite e2107892
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:8
|g day:01
|g month:02
|g pages:e2107892
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202107892
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 8
|b 01
|c 02
|h e2107892
|