High-Resolution Depth Maps Imaging via Attention-Based Hierarchical Multi-Modal Fusion

Depth map records distance between the viewpoint and objects in the scene, which plays a critical role in many real-world applications. However, depth map captured by consumer-grade RGB-D cameras suffers from low spatial resolution. Guided depth map super-resolution (DSR) is a popular approach to ad...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 648-663
1. Verfasser: Zhong, Zhiwei (VerfasserIn)
Weitere Verfasser: Liu, Xianming, Jiang, Junjun, Zhao, Debin, Chen, Zhiwen, Ji, Xiangyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM334155797
003 DE-627
005 20231225223120.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3131041  |2 doi 
028 5 2 |a pubmed24n1113.xml 
035 |a (DE-627)NLM334155797 
035 |a (NLM)34878976 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhong, Zhiwei  |e verfasserin  |4 aut 
245 1 0 |a High-Resolution Depth Maps Imaging via Attention-Based Hierarchical Multi-Modal Fusion 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Depth map records distance between the viewpoint and objects in the scene, which plays a critical role in many real-world applications. However, depth map captured by consumer-grade RGB-D cameras suffers from low spatial resolution. Guided depth map super-resolution (DSR) is a popular approach to address this problem, which attempts to restore a high-resolution (HR) depth map from the input low-resolution (LR) depth and its coupled HR RGB image that serves as the guidance. The most challenging issue for guided DSR is how to correctly select consistent structures and propagate them, and properly handle inconsistent ones. In this paper, we propose a novel attention-based hierarchical multi-modal fusion (AHMF) network for guided DSR. Specifically, to effectively extract and combine relevant information from LR depth and HR guidance, we propose a multi-modal attention based fusion (MMAF) strategy for hierarchical convolutional layers, including a feature enhancement block to select valuable features and a feature recalibration block to unify the similarity metrics of modalities with different appearance characteristics. Furthermore, we propose a bi-directional hierarchical feature collaboration (BHFC) module to fully leverage low-level spatial information and high-level structure information among multi-scale features. Experimental results show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency 
650 4 |a Journal Article 
700 1 |a Liu, Xianming  |e verfasserin  |4 aut 
700 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
700 1 |a Zhao, Debin  |e verfasserin  |4 aut 
700 1 |a Chen, Zhiwen  |e verfasserin  |4 aut 
700 1 |a Ji, Xiangyang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 648-663  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:648-663 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3131041  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 648-663