MetaCloth : Learning Unseen Tasks of Dense Fashion Landmark Detection From a Few Samples

Recent advanced methods for fashion landmark detection are mainly driven by training convolutional neural networks on large-scale fashion datasets, which has a large number of annotated landmarks. However, such large-scale annotations are difficult and expensive to obtain in real-world applications,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 1120-1133
1. Verfasser: Ge, Yuying (VerfasserIn)
Weitere Verfasser: Zhang, Ruimao, Luo, Ping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM334155770
003 DE-627
005 20250302183740.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3131033  |2 doi 
028 5 2 |a pubmed25n1113.xml 
035 |a (DE-627)NLM334155770 
035 |a (NLM)34878975 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ge, Yuying  |e verfasserin  |4 aut 
245 1 0 |a MetaCloth  |b Learning Unseen Tasks of Dense Fashion Landmark Detection From a Few Samples 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent advanced methods for fashion landmark detection are mainly driven by training convolutional neural networks on large-scale fashion datasets, which has a large number of annotated landmarks. However, such large-scale annotations are difficult and expensive to obtain in real-world applications, thus models that can generalize well from a small amount of labelled data are desired. We investigate this problem of few-shot fashion landmark detection, where only a few labelled samples are available for an unseen task. This work proposes a novel framework named MetaCloth via meta-learning, which is able to learn unseen tasks of dense fashion landmark detection with only a few annotated samples. Unlike previous meta-learning work that focus on solving " N -way K -shot" tasks, where each task predicts N number of classes by training with K annotated samples for each class ( N is fixed for all seen and unseen tasks), a task in MetaCloth detects N different landmarks for different clothing categories using K samples, where N varies across tasks, because different clothing categories usually have various number of landmarks. Therefore, numbers of parameters are various for different seen and unseen tasks in MetaCloth. MetaCloth is carefully designed to dynamically generate different numbers of parameters for different tasks, and learn a generalizable feature extraction network from a few annotated samples with a set of good initialization parameters. Extensive experiments show that MetaCloth outperforms its counterparts by a large margin 
650 4 |a Journal Article 
700 1 |a Zhang, Ruimao  |e verfasserin  |4 aut 
700 1 |a Luo, Ping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 1120-1133  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:1120-1133 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3131033  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 1120-1133