|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM334143608 |
003 |
DE-627 |
005 |
20231225223104.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202108353
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1113.xml
|
035 |
|
|
|a (DE-627)NLM334143608
|
035 |
|
|
|a (NLM)34877734
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Jiaxun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Interfacial Design for a 4.6 V High-Voltage Single-Crystalline LiCoO2 Cathode
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.02.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Single-crystalline cathode materials have attracted intensive interest in offering greater capacity retention than their polycrystalline counterparts by reducing material surfaces and phase boundaries. However, the single-crystalline LiCoO2 suffers severe structural instability and capacity fading when charged to high voltages (4.6 V) due to Co element dissolution and O loss, crack formation, and subsequent electrolyte penetration. Herein, by forming a robust cathode electrolyte interphase (CEI) in an all-fluorinated electrolyte, reversible planar gliding along the (003) plane in a single-crystalline LiCoO2 cathode is protected due to the prevention of element dissolution and electrolyte penetration. The robust CEI effectively controls the performance fading issue of the single-crystalline cathode at a high operating voltage of 4.6 V, providing new insights for improved electrolyte design of high-energy-density battery cathode materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a high-voltage LiCoO2 cathodes
|
650 |
|
4 |
|a inorganic-rich cathode electrolyte interphase
|
650 |
|
4 |
|a nonflammable electrolytes
|
650 |
|
4 |
|a single-crystalline cathodes
|
700 |
1 |
|
|a Wang, Peng-Fei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bai, Panxing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wan, Hongli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Sufu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hou, Singyuk
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pu, Xiangjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xia, Jiale
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Weiran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zeyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nan, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiyue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Jijian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Chunsheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 8 vom: 27. Feb., Seite e2108353
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:8
|g day:27
|g month:02
|g pages:e2108353
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202108353
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 8
|b 27
|c 02
|h e2108353
|