Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weak-Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 9 vom: 28. März, Seite e2108012
1. Verfasser: Li, Jiachen (VerfasserIn)
Weitere Verfasser: Huang, Di, Cheng, Ruoyu, Figueiredo, Patrícia, Fontana, Flavia, Correia, Alexandra, Wang, Shiqi, Liu, Zehua, Kemell, Marianna, Torrieri, Giulia, Mäkilä, Ermei M, Salonen, Jarno J, Hirvonen, Jouni, Gao, Yan, Li, Jialiang, Luo, Zhenyang, Santos, Hélder A, Xia, Bing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article antitumor immune response biomimetic nanovaccines cancer cell membranes photothermal synergized immunotherapy porous silicon@Au nanocomposites
LEADER 01000naa a22002652 4500
001 NLM334143500
003 DE-627
005 20231225223103.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202108012  |2 doi 
028 5 2 |a pubmed24n1113.xml 
035 |a (DE-627)NLM334143500 
035 |a (NLM)34877724 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jiachen  |e verfasserin  |4 aut 
245 1 0 |a Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weak-Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a An alternative strategy of choosing photothermal and weak-immunostimulatory porous siliconAu nanocomposites as particulate cores to prepare a biomimetic nanovaccine is reported to improve its biosafety and immunotherapeutic efficacy for solid tumors. A quantitative analysis method is used to calculate the loading amount of cancer cell membranes onto porous silicon@Au nanocomposites. Assisted with foreign-body responses, these exogenous nanoparticulate cores with weak immunostimulatory effect can still efficiently deliver cancer cell membranes into dendritic cells to activate them and the downstream antitumor immunity, resulting in no occurrence of solid tumors and the survival of all immunized mice during 55 day observation. In addition, this nanovaccine, as a photothermal therapeutic agent, synergized with additional immunotherapies can significantly inhibit the growth and metastasis of established solid tumors, via the initiation of the antitumor immune responses in the body and the reversion of their immunosuppressive microenvironments. Considering the versatile surface engineering of porous silicon nanoparticles, the strategy developed here is beneficial to construct multifunctional nanovaccines with better biosafety and more diagnosis or therapeutic modalities against the occurrence, recurrence, or metastasis of solid tumors in future clinical practice 
650 4 |a Journal Article 
650 4 |a antitumor immune response 
650 4 |a biomimetic nanovaccines 
650 4 |a cancer cell membranes 
650 4 |a photothermal synergized immunotherapy 
650 4 |a porous silicon@Au nanocomposites 
700 1 |a Huang, Di  |e verfasserin  |4 aut 
700 1 |a Cheng, Ruoyu  |e verfasserin  |4 aut 
700 1 |a Figueiredo, Patrícia  |e verfasserin  |4 aut 
700 1 |a Fontana, Flavia  |e verfasserin  |4 aut 
700 1 |a Correia, Alexandra  |e verfasserin  |4 aut 
700 1 |a Wang, Shiqi  |e verfasserin  |4 aut 
700 1 |a Liu, Zehua  |e verfasserin  |4 aut 
700 1 |a Kemell, Marianna  |e verfasserin  |4 aut 
700 1 |a Torrieri, Giulia  |e verfasserin  |4 aut 
700 1 |a Mäkilä, Ermei M  |e verfasserin  |4 aut 
700 1 |a Salonen, Jarno J  |e verfasserin  |4 aut 
700 1 |a Hirvonen, Jouni  |e verfasserin  |4 aut 
700 1 |a Gao, Yan  |e verfasserin  |4 aut 
700 1 |a Li, Jialiang  |e verfasserin  |4 aut 
700 1 |a Luo, Zhenyang  |e verfasserin  |4 aut 
700 1 |a Santos, Hélder A  |e verfasserin  |4 aut 
700 1 |a Xia, Bing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 9 vom: 28. März, Seite e2108012  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:9  |g day:28  |g month:03  |g pages:e2108012 
856 4 0 |u http://dx.doi.org/10.1002/adma.202108012  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 9  |b 28  |c 03  |h e2108012