Sub-Region Localized Hashing for Fine-Grained Image Retrieval

Fine-grained image hashing is challenging due to the difficulties of capturing discriminative local information to generate hash codes. On the one hand, existing methods usually extract local features with the dense attention mechanism by focusing on dense local regions, which cannot contain diverse...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 06., Seite 314-326
1. Verfasser: Xiang, Xinguang (VerfasserIn)
Weitere Verfasser: Zhang, Yajie, Jin, Lu, Li, Zechao, Tang, Jinhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM33407875X
003 DE-627
005 20231225222947.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3131042  |2 doi 
028 5 2 |a pubmed24n1113.xml 
035 |a (DE-627)NLM33407875X 
035 |a (NLM)34871171 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiang, Xinguang  |e verfasserin  |4 aut 
245 1 0 |a Sub-Region Localized Hashing for Fine-Grained Image Retrieval 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fine-grained image hashing is challenging due to the difficulties of capturing discriminative local information to generate hash codes. On the one hand, existing methods usually extract local features with the dense attention mechanism by focusing on dense local regions, which cannot contain diverse local information for fine-grained hashing. On the other hand, hash codes of the same class suffer from large intra-class variation of fine-grained images. To address the above problems, this work proposes a novel sub-Region Localized Hashing (sRLH) to learn intra-class compact and inter-class separable hash codes that also contain diverse subtle local information for efficient fine-grained image retrieval. Specifically, to localize diverse local regions, a sub-region localization module is developed to learn discriminative local features by locating the peaks of non-overlap sub-regions in the feature map. Different from localizing dense local regions, these peaks can guide the sub-region localization module to capture multifarious local discriminative information by paying close attention to dispersive local regions. To mitigate intra-class variations, hash codes of the same class are enforced to approach one common binary center. Meanwhile, the gram-schmidt orthogonalization is performed on the binary centers to make the hash codes inter-class separable. Extensive experimental results on four widely used fine-grained image retrieval datasets demonstrate the superiority of sRLH to several state-of-the-art methods. The source code of sRLH will be released at https://github.com/ZhangYajie-NJUST/sRLH.git 
650 4 |a Journal Article 
700 1 |a Zhang, Yajie  |e verfasserin  |4 aut 
700 1 |a Jin, Lu  |e verfasserin  |4 aut 
700 1 |a Li, Zechao  |e verfasserin  |4 aut 
700 1 |a Tang, Jinhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 06., Seite 314-326  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:06  |g pages:314-326 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3131042  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 06  |h 314-326