Benchmark study on deep neural network potentials for small organic molecules

© 2021 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 43(2022), 5 vom: 15. Feb., Seite 308-318
1. Verfasser: Modee, Rohit (VerfasserIn)
Weitere Verfasser: Laghuvarapu, Siddhartha, Priyakumar, U Deva
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't energy prediction machine learning neural network potentials potential energy surface small organic molecules
LEADER 01000naa a22002652 4500
001 NLM33407052X
003 DE-627
005 20231225222937.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26790  |2 doi 
028 5 2 |a pubmed24n1113.xml 
035 |a (DE-627)NLM33407052X 
035 |a (NLM)34870332 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Modee, Rohit  |e verfasserin  |4 aut 
245 1 0 |a Benchmark study on deep neural network potentials for small organic molecules 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.02.2022 
500 |a Date Revised 07.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a There has been tremendous advancement in machine learning (ML) applications in computational chemistry, particularly in neural network potentials (NNP). NNPs can approximate potential energy surface (PES) as a high dimensional function by learning from existing reference data, thereby circumventing the need to solve the electronic Schrödinger equation explicitly. As a result, ML accelerates chemical space exploration and property prediction compared to quantum mechanical methods. Novel ML methods have the potential to provide efficient means for predicting the properties of molecules. However, this potential has been limited by the lack of standard comparative evaluations. In this work, we compare four selected models, that is, ANI, PhysNet, SchNet, and BAND-NN, developed to represent the PES of small organic molecules. We evaluate these models for their accuracy and transferability on two different test sets (i) Small organic molecules of up to eight-heavy atoms on which ANI and SchNet achieve root mean square error (RMSE) of 0.55 and 0.60 kcal/mol, respectively. (ii) On random selection of molecules from the GDB-11 database with 10-heavy atoms, ANI achieves RMSE of 1.17 kcal/mol and SchNet achieves RMSE of 1.89 kcal/mol. We examine their ability to produce smooth meaningful surface by performing PES scans for bond stretch, angle bend, and dihedral rotations on relatively large molecules to assess their possible application in molecular dynamics simulations. We also evaluate their performance for yielding minimum energy structures via geometry optimization using various minimization algorithms. All these models were also able to accurately differentiate different isomers of the same empirical formula C10H20 . ANI and PhysNet achieve an RMSE of 0.29 and 0.52 kcal/mol, respectively, on C10H20 isomers 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a energy prediction 
650 4 |a machine learning 
650 4 |a neural network potentials 
650 4 |a potential energy surface 
650 4 |a small organic molecules 
700 1 |a Laghuvarapu, Siddhartha  |e verfasserin  |4 aut 
700 1 |a Priyakumar, U Deva  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 43(2022), 5 vom: 15. Feb., Seite 308-318  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:43  |g year:2022  |g number:5  |g day:15  |g month:02  |g pages:308-318 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26790  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2022  |e 5  |b 15  |c 02  |h 308-318