Microfluidic Screening-Assisted Machine Learning to Investigate Vertical Phase Separation of Small Molecule:Polymer Blend

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 7 vom: 07. Feb., Seite e2107596
1. Verfasser: Lee, Jeong-Chan (VerfasserIn)
Weitere Verfasser: Woo, Jun Hee, Lee, Ho-Jun, Lee, Minho, Woo, Heejin, Baek, Seunghyeok, Nam, Jaewook, Sim, Joo Yong, Park, Steve
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article machine learning microfluidics phase separation solution shearing thin-films
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Solution-based thin-film processing is a widely utilized technique for the fabrication of various devices. In particular, the tunability of the ink composition and coating condition allows precise control of thin-film properties and device performance. Despite the advantage of having such tunability, the sheer number of possible combinations of experimental parameters render it infeasible to efficiently optimize device performance and analyze the correlation between experimental parameters and device performance. In this work, a microfluidic screening-embedded thin-film processing technique is developed, through which thin-films of varying ratios of small molecule semiconductor:polymer blend are simultaneously generated and screened in a time- and resource-efficient manner. Moreover, utilizing the thin-films of varying combinations of experimental parameters, machine learning models are trained to predict the transistor performance. Gaussian Process Regression (GPR) algorithms tuned by Bayesian optimization shows the best predictive accuracy amongst the trained models, which enables narrowing down of the combinations of experimental parameters and investigation of the degree of vertical phase separation under the predicted parameter space. The technique can serve as a guideline for elucidating the underlying complex parameter-property-performance correlations in solution-based thin-film processing, thereby accelerating the optimization of various thin-film devices in the future
Beschreibung:Date Revised 17.02.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202107596