Auxetics-Inspired Tunable Metamaterials for Magnetic Resonance Imaging

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 6 vom: 01. Feb., Seite e2109032
1. Verfasser: Wu, Ke (VerfasserIn)
Weitere Verfasser: Zhao, Xiaoguang, Bifano, Thomas G, Anderson, Stephan W, Zhang, Xin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article auxetics magnetic coupling magnetic resonance imaging signal-to-noise ratio tunable metamaterials
LEADER 01000caa a22002652 4500
001 NLM334019869
003 DE-627
005 20240822232044.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202109032  |2 doi 
028 5 2 |a pubmed24n1509.xml 
035 |a (DE-627)NLM334019869 
035 |a (NLM)34865253 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Ke  |e verfasserin  |4 aut 
245 1 0 |a Auxetics-Inspired Tunable Metamaterials for Magnetic Resonance Imaging 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.02.2022 
500 |a Date Revised 22.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Auxetics refers to structures or materials with a negative Poisson's ratio, thereby capable of exhibiting counterintuitive behaviors. Herein, auxetic structures are exploited to design mechanically tunable metamaterials in both planar and hemispherical configurations operating at megahertz (MHz) frequencies, optimized for their application to magnetic resonance imaging (MRI). Specially, the reported tunable metamaterials are composed of arrays of interjointed unit cells featuring metallic helices, enabling auxetic patterns with a negative Poisson's ratio. The deployable deformation of the metamaterials yields an added degree of freedom with respect to frequency tunability through the resultant modification of the electromagnetic interactions between unit cells. The metamaterials are fabricated using 3D printing technology and an ≈20 MHz frequency shift of the resonance mode is enabled during deformation. Experimental validation is performed in a clinical (3.0 T) MRI system, demonstrating that the metamaterials enable a marked boost in radiofrequency field strength under resonance-matched conditions, ultimately yielding a dramatic increase in the signal-to-noise ratio (≈4.5×) of MRI. The tunable metamaterials presented herein offer a novel pathway toward the practical utilization of metamaterials in MRI, as well as a range of other emerging applications 
650 4 |a Journal Article 
650 4 |a auxetics 
650 4 |a magnetic coupling 
650 4 |a magnetic resonance imaging 
650 4 |a signal-to-noise ratio 
650 4 |a tunable metamaterials 
700 1 |a Zhao, Xiaoguang  |e verfasserin  |4 aut 
700 1 |a Bifano, Thomas G  |e verfasserin  |4 aut 
700 1 |a Anderson, Stephan W  |e verfasserin  |4 aut 
700 1 |a Zhang, Xin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 6 vom: 01. Feb., Seite e2109032  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:6  |g day:01  |g month:02  |g pages:e2109032 
856 4 0 |u http://dx.doi.org/10.1002/adma.202109032  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 6  |b 01  |c 02  |h e2109032