Conserving alpha and beta diversity in wood-production landscapes
© 2021 Society for Conservation Biology.
Veröffentlicht in: | Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 36(2022), 3 vom: 01. Juni, Seite e13872 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Conservation biology : the journal of the Society for Conservation Biology |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. alternative energy biodiversidad biodiversity bioenergy bioenergía biomasa biomass mehr... |
Zusammenfassung: | © 2021 Society for Conservation Biology. International demand for wood and other forest products continues to grow rapidly, and uncertainties remain about how animal communities will respond to intensifying resource extraction associated with woody bioenergy production. We examined changes in alpha and beta diversity of bats, bees, birds, and reptiles across wood production landscapes in the southeastern United States, a biodiversity hotspot that is one of the principal sources of woody biomass globally. We sampled across a spatial gradient of paired forest land-uses (representing pre and postharvest) that allowed us to evaluate biological community changes resulting from several types of biomass harvest. Short-rotation practices and residue removal following clearcuts were associated with reduced alpha diversity (-14.1 and -13.9 species, respectively) and lower beta diversity (i.e., Jaccard dissimilarity) between land-use pairs (0.46 and 0.50, respectively), whereas midrotation thinning increased alpha (+3.5 species) and beta diversity (0.59). Over the course of a stand rotation in a single location, biomass harvesting generally led to less biodiversity. Cross-taxa responses to resource extraction were poorly predicted by alpha diversity: correlations in responses between taxonomic groups were highly variable (-0.2 to 0.4) with large uncertainties. In contrast, beta diversity patterns were highly consistent and predictable across taxa, where correlations in responses between taxonomic groups were all positive (0.05-0.4) with more narrow uncertainties. Beta diversity may, therefore, be a more reliable and information-rich indicator than alpha diversity in understanding animal community response to landscape change. Patterns in beta diversity were primarily driven by turnover instead of species loss or gain, indicating that wood extraction generates habitats that support different biological communities |
---|---|
Beschreibung: | Date Completed 30.05.2022 Date Revised 08.07.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1523-1739 |
DOI: | 10.1111/cobi.13872 |