Floquet theory in magnetic resonance : Formalism and applications

Copyright © 2021 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Progress in nuclear magnetic resonance spectroscopy. - 1998. - 126-127(2021) vom: 15. Okt., Seite 17-58
1. Verfasser: Ivanov, Konstantin L (VerfasserIn)
Weitere Verfasser: Mote, Kaustubh R, Ernst, Matthias, Equbal, Asif, Madhu, Perunthiruthy K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Progress in nuclear magnetic resonance spectroscopy
Schlagworte:Journal Article Review Average Hamiltonian theory Dynamic nuclear polarisation Floquet theory Level crossing Magic-angle spinning NMR Solid-state NMR Spin chemistry
LEADER 01000caa a22002652c 4500
001 NLM333897919
003 DE-627
005 20250302180402.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.pnmrs.2021.05.002  |2 doi 
028 5 2 |a pubmed25n1112.xml 
035 |a (DE-627)NLM333897919 
035 |a (NLM)34852924 
035 |a (PII)S0079-6565(21)00016-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ivanov, Konstantin L  |e verfasserin  |4 aut 
245 1 0 |a Floquet theory in magnetic resonance  |b Formalism and applications 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.01.2022 
500 |a Date Revised 27.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2021 Elsevier B.V. All rights reserved. 
520 |a Floquet theory is an elegant mathematical formalism originally developed to solve time-dependent differential equations. Besides other fields, it has found applications in optical spectroscopy and nuclear magnetic resonance (NMR). This review attempts to give a perspective of the Floquet formalism as applied in NMR and shows how it allows one to solve various problems with a focus on solid-state NMR. We include both matrix- and operator-based approaches. We discuss different problems where the Hamiltonian changes with time in a periodic way. Such situations occur, for example, in solid-state NMR experiments where the time dependence of the Hamiltonian originates either from magic-angle spinning or from the application of amplitude- or phase-modulated radiofrequency fields, or from both. Specific cases include multiple-quantum and multiple-frequency excitation schemes. In all these cases, Floquet analysis allows one to define an effective Hamiltonian and, moreover, to treat cases that cannot be described by the more popularly used and simpler-looking average Hamiltonian theory based on the Magnus expansion. An important example is given by spin dynamics originating from multiple-quantum phenomena (level crossings). We show that the Floquet formalism is a very general approach for solving diverse problems in spectroscopy 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Average Hamiltonian theory 
650 4 |a Dynamic nuclear polarisation 
650 4 |a Floquet theory 
650 4 |a Level crossing 
650 4 |a Magic-angle spinning 
650 4 |a NMR 
650 4 |a Solid-state NMR 
650 4 |a Spin chemistry 
700 1 |a Mote, Kaustubh R  |e verfasserin  |4 aut 
700 1 |a Ernst, Matthias  |e verfasserin  |4 aut 
700 1 |a Equbal, Asif  |e verfasserin  |4 aut 
700 1 |a Madhu, Perunthiruthy K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Progress in nuclear magnetic resonance spectroscopy  |d 1998  |g 126-127(2021) vom: 15. Okt., Seite 17-58  |w (DE-627)NLM098212745  |x 1873-3301  |7 nnas 
773 1 8 |g volume:126-127  |g year:2021  |g day:15  |g month:10  |g pages:17-58 
856 4 0 |u http://dx.doi.org/10.1016/j.pnmrs.2021.05.002  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 126-127  |j 2021  |b 15  |c 10  |h 17-58