Ultrasensitive Electrochemical Impedance Chiral Discrimination and Sensing of Tryptophan Isomers Based on Core-Shell-Structured Au-Ag Nanoparticles
Au-Ag nanoparticles (Au-Ag NPs) with a core-shell structure are prepared and used for ultrasensitive electrochemical impedance (EI) discrimination of the isomers of tryptophan (Trp). As revealed by circular dichroism, rotary polarization caused by the Au-Ag NPs is consistent with D-Trp but opposite...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 49 vom: 14. Dez., Seite 14454-14462 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Silver 3M4G523W1G Gold 7440-57-5 Tryptophan 8DUH1N11BX |
Zusammenfassung: | Au-Ag nanoparticles (Au-Ag NPs) with a core-shell structure are prepared and used for ultrasensitive electrochemical impedance (EI) discrimination of the isomers of tryptophan (Trp). As revealed by circular dichroism, rotary polarization caused by the Au-Ag NPs is consistent with D-Trp but opposite to L-Trp, and thus, the Au-Ag NPs can selectively combine with D-Trp through preferential interactions. Compared with Au-Ag NPs, the composites of D-Trp and Au-Ag NPs (Au-Ag NPs/D-Trp) display significantly increased charge transfer resistance (Rct); differently, the Rct of Au-Ag NPs/L-Trp remains almost unchanged because the Au-Ag NPs exhibit poor affinity toward L-Trp. Therefore, ultrasensitive EI enantiodiscrimination of the isomers of Trp is realized even at an extremely low concentration of the Trp isomers (0.1 nM). In addition, it is successfully applied in the ultrasensitive determination of D-Trp at a low concentration level (0.1 nM∼10 μM) |
---|---|
Beschreibung: | Date Completed 27.01.2022 Date Revised 27.01.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.1c02423 |