Comparison of random forest and multiple linear regression to model the mass balance of biosolids from a complex biosolids management area

© 2021 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 94(2022), 1 vom: 27. Jan., Seite e1668
1. Verfasser: Pluth, Thaís Bremm (VerfasserIn)
Weitere Verfasser: Brose, Dominic A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article biosolids machine learning multiple linear regression planning random forest Biosolids Soil
LEADER 01000naa a22002652 4500
001 NLM33387384X
003 DE-627
005 20231225222536.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.1668  |2 doi 
028 5 2 |a pubmed24n1112.xml 
035 |a (DE-627)NLM33387384X 
035 |a (NLM)34850485 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pluth, Thaís Bremm  |e verfasserin  |4 aut 
245 1 0 |a Comparison of random forest and multiple linear regression to model the mass balance of biosolids from a complex biosolids management area 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.01.2022 
500 |a Date Revised 10.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Water Environment Federation. 
520 |a The use of biosolids as a soil amendment provides an important alternative to disposal and can improve soil health; however, distribution for water resource recovery facilities (WRRFs) in the United States can be challenging due to decreasing cropland, increased precipitation, variable plant operations, and financial constraints. Although statistical modeling is commonly used in the water sector, machine learning is still an emerging tool and can provide insights to optimize operations. Random forest (RF), a machine learning model, and multiple linear regression (MLR) were used in this study to model the mass balance of biosolids from a complex biosolids management area. The RF model outperformed (R2  = 0.89) the MLR model (R2  = 0.49) and showed that rainfall was a major factor impacting distribution. Storage for dried biosolids would help decouple drying operations from wet weather and increase distribution. This study demonstrated how machine learning can assist in decision-making processes for long-term planning at WRRFs. PRACTITIONER POINTS: Random forest predicted the 7-day average mass balance of biosolids from a complex biosolids management area. Decoupling biosolids drying operations from wet weather was identified as the highest operational priority. Machine learning outperformed multiple linear regression and can be an important tool for the water sector 
650 4 |a Journal Article 
650 4 |a biosolids 
650 4 |a machine learning 
650 4 |a multiple linear regression 
650 4 |a planning 
650 4 |a random forest 
650 7 |a Biosolids  |2 NLM 
650 7 |a Soil  |2 NLM 
700 1 |a Brose, Dominic A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 94(2022), 1 vom: 27. Jan., Seite e1668  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:94  |g year:2022  |g number:1  |g day:27  |g month:01  |g pages:e1668 
856 4 0 |u http://dx.doi.org/10.1002/wer.1668  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 94  |j 2022  |e 1  |b 27  |c 01  |h e1668