Self-Calibrated Multi-Sensor Wearable for Hand Tracking and Modeling

We present a multi-sensor system for consistent 3D hand pose tracking and modeling that leverages the advantages of both wearable and optical sensors. Specifically, we employ a stretch-sensing soft glove and three IMUs in combination with an RGB-D camera. Different sensor modalities are fused based...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 3 vom: 03. März, Seite 1769-1784
1. Verfasser: Gosala, Nikhil (VerfasserIn)
Weitere Verfasser: Wang, Fangjinhua, Cui, Zhaopeng, Liang, Hanxue, Glauser, Oliver, Wu, Shihao, Sorkine-Hornung, Olga
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM333840224
003 DE-627
005 20231225222455.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3131230  |2 doi 
028 5 2 |a pubmed24n1112.xml 
035 |a (DE-627)NLM333840224 
035 |a (NLM)34847031 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gosala, Nikhil  |e verfasserin  |4 aut 
245 1 0 |a Self-Calibrated Multi-Sensor Wearable for Hand Tracking and Modeling 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 03.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We present a multi-sensor system for consistent 3D hand pose tracking and modeling that leverages the advantages of both wearable and optical sensors. Specifically, we employ a stretch-sensing soft glove and three IMUs in combination with an RGB-D camera. Different sensor modalities are fused based on the availability and confidence estimation, enabling seamless hand tracking in challenging environments with partial or even complete occlusion. To maximize the accuracy while maintaining high ease-of-use, we propose an automated user calibration that uses the RGB-D camera data to refine both the glove mapping model and the multi-IMU system parameters. Extensive experiments show that our setup outperforms the wearable-only approaches when the hand is in the field-of-view and outplays the camera-only methods when the hand is occluded 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Fangjinhua  |e verfasserin  |4 aut 
700 1 |a Cui, Zhaopeng  |e verfasserin  |4 aut 
700 1 |a Liang, Hanxue  |e verfasserin  |4 aut 
700 1 |a Glauser, Oliver  |e verfasserin  |4 aut 
700 1 |a Wu, Shihao  |e verfasserin  |4 aut 
700 1 |a Sorkine-Hornung, Olga  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 3 vom: 03. März, Seite 1769-1784  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:3  |g day:03  |g month:03  |g pages:1769-1784 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3131230  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 3  |b 03  |c 03  |h 1769-1784