CNN-Based Image Reconstruction Method for Ultrafast Ultrasound Imaging

Ultrafast ultrasound (US) revolutionized biomedical imaging with its capability of acquiring full-view frames at over 1 kHz, unlocking breakthrough modalities such as shear-wave elastography and functional US neuroimaging. Yet, it suffers from strong diffraction artifacts, mainly caused by grating l...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 69(2022), 4 vom: 03. Apr., Seite 1154-1168
Auteur principal: Perdios, Dimitris (Auteur)
Autres auteurs: Vonlanthen, Manuel, Martinez, Florian, Arditi, Marcel, Thiran, Jean-Philippe
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM33384016X
003 DE-627
005 20250302175655.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2021.3131383  |2 doi 
028 5 2 |a pubmed25n1112.xml 
035 |a (DE-627)NLM33384016X 
035 |a (NLM)34847025 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Perdios, Dimitris  |e verfasserin  |4 aut 
245 1 0 |a CNN-Based Image Reconstruction Method for Ultrafast Ultrasound Imaging 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.04.2022 
500 |a Date Revised 23.06.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Ultrafast ultrasound (US) revolutionized biomedical imaging with its capability of acquiring full-view frames at over 1 kHz, unlocking breakthrough modalities such as shear-wave elastography and functional US neuroimaging. Yet, it suffers from strong diffraction artifacts, mainly caused by grating lobes, sidelobes, or edge waves. Multiple acquisitions are typically required to obtain a sufficient image quality, at the cost of a reduced frame rate. To answer the increasing demand for high-quality imaging from single unfocused acquisitions, we propose a two-step convolutional neural network (CNN)-based image reconstruction method, compatible with real-time imaging. A low-quality estimate is obtained by means of a backprojection-based operation, akin to conventional delay-and-sum beamforming, from which a high-quality image is restored using a residual CNN with multiscale and multichannel filtering properties, trained specifically to remove the diffraction artifacts inherent to ultrafast US imaging. To account for both the high dynamic range and the oscillating properties of radio frequency US images, we introduce the mean signed logarithmic absolute error (MSLAE) as a training loss function. Experiments were conducted with a linear transducer array, in single plane-wave (PW) imaging. Trainings were performed on a simulated dataset, crafted to contain a wide diversity of structures and echogenicities. Extensive numerical evaluations demonstrate that the proposed approach can reconstruct images from single PWs with a quality similar to that of gold-standard synthetic aperture imaging, on a dynamic range in excess of 60 dB. In vitro and in vivo experiments show that trainings carried out on simulated data perform well in experimental settings 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Vonlanthen, Manuel  |e verfasserin  |4 aut 
700 1 |a Martinez, Florian  |e verfasserin  |4 aut 
700 1 |a Arditi, Marcel  |e verfasserin  |4 aut 
700 1 |a Thiran, Jean-Philippe  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 69(2022), 4 vom: 03. Apr., Seite 1154-1168  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnas 
773 1 8 |g volume:69  |g year:2022  |g number:4  |g day:03  |g month:04  |g pages:1154-1168 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2021.3131383  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 69  |j 2022  |e 4  |b 03  |c 04  |h 1154-1168