Divergent Angular Representation for Open Set Image Recognition

Open set recognition (OSR) models need not only discriminate between known classes but also detect unknown class samples unavailable during training. One promising approach is to learn discriminative representations over known classes with strong intra-class similarity and inter-class discrepancy. T...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 25., Seite 176-189
1. Verfasser: Park, Jaewoo (VerfasserIn)
Weitere Verfasser: Low, Cheng Yaw, Beng Jin Teoh, Andrew
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM333594886
003 DE-627
005 20231225221951.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3128318  |2 doi 
028 5 2 |a pubmed24n1111.xml 
035 |a (DE-627)NLM333594886 
035 |a (NLM)34822329 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Park, Jaewoo  |e verfasserin  |4 aut 
245 1 0 |a Divergent Angular Representation for Open Set Image Recognition 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Open set recognition (OSR) models need not only discriminate between known classes but also detect unknown class samples unavailable during training. One promising approach is to learn discriminative representations over known classes with strong intra-class similarity and inter-class discrepancy. Then, the powerful class discrimination learned from the known classes can be extended to known and unknown classes. Without appropriate regularization, however, the model may learn representations trivially, collapsing unknown class representations to the known class ones. To resolve this problem, we propose Divergent Angular Representation (DivAR) based on two approaches. Firstly, DivAR maximizes its representational discrimination between known classes via a highly discriminative loss. Secondly, to ensure separation between known and unknown classes in the representation space, DivAR boosts the directional variation of representations over global samples. In addition, self-supervision is leveraged to improve the representation's robustness and extend DivAR to one-class classification. Moreover, unlike other OSR methods that require an extra machinery for inference, DivAR learns and infers in a single module. Extensive experiments on generic image datasets demonstrate the plausibility and effectiveness of DivAR for both OSR and One-Class Classification (OCC) problems 
650 4 |a Journal Article 
700 1 |a Low, Cheng Yaw  |e verfasserin  |4 aut 
700 1 |a Beng Jin Teoh, Andrew  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 25., Seite 176-189  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:25  |g pages:176-189 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3128318  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 25  |h 176-189