A Novel Hybrid Level Set Model for Non-Rigid Object Contour Tracking

Most existing trackers use bounding boxes for object tracking. However, the background contained in the bounding box inevitably decreases the accuracy of the target model, which affects the performance of the tracker and is particularly pronounced for non-rigid objects. To address the above issue, t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 24., Seite 15-29
1. Verfasser: Cai, Qing (VerfasserIn)
Weitere Verfasser: Liu, Huiying, Qian, Yiming, Zhou, Sanping, Wang, Jinjun, Yang, Yee-Hong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM333553950
003 DE-627
005 20250302172141.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3112051  |2 doi 
028 5 2 |a pubmed25n1111.xml 
035 |a (DE-627)NLM333553950 
035 |a (NLM)34818183 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cai, Qing  |e verfasserin  |4 aut 
245 1 2 |a A Novel Hybrid Level Set Model for Non-Rigid Object Contour Tracking 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.11.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most existing trackers use bounding boxes for object tracking. However, the background contained in the bounding box inevitably decreases the accuracy of the target model, which affects the performance of the tracker and is particularly pronounced for non-rigid objects. To address the above issue, this paper proposes a novel hybrid level set model, which can robustly address the issue of topology changing, occlusions and abrupt motion in non-rigid object tracking by accurately tracking the object contour. In particular, an appearance model is first obtained by repeatedly training and relabeling the initial labeled frame using competing one-class SVMs. Then, by integrating the trained appearance model, an edge detector and image spatial information into the level set model, a new hybrid level set model is presented, which accurately locates the object contour and feeds back to the competing one-class SVMs to update the appearance model of the next frame. In addition, a motion model is defined to predict the accurate location of the object when occlusion and abrupt motion occur in the next frame. Finally, the experimental results on state-of-the-art benchmarks demonstrate the feasibility and effectiveness of the proposed model and the superiority of the proposed method over existing trackers in terms of accuracy and robustness 
650 4 |a Journal Article 
700 1 |a Liu, Huiying  |e verfasserin  |4 aut 
700 1 |a Qian, Yiming  |e verfasserin  |4 aut 
700 1 |a Zhou, Sanping  |e verfasserin  |4 aut 
700 1 |a Wang, Jinjun  |e verfasserin  |4 aut 
700 1 |a Yang, Yee-Hong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 24., Seite 15-29  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:24  |g pages:15-29 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3112051  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 24  |h 15-29