|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM333537351 |
003 |
DE-627 |
005 |
20231225221839.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202108727
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1111.xml
|
035 |
|
|
|a (DE-627)NLM333537351
|
035 |
|
|
|a (NLM)34816506
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhu, Zhijie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Stabilization of Exposed Metal Nanocrystals in High-Temperature Heterogeneous Catalysis
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 10.02.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Colloidal metal nanocrystals with uniform sizes, shapes, compositions, and architectures are ideal building blocks for constructing heterogeneous catalysts with well-defined characteristics toward the investigation of accurate structure-property relationships and better understanding of catalytic mechanism. However, their applications in high-temperature heterogeneous catalysis are often restricted by the difficulty in maintaining the high metal dispersity and easy accessibility to active sites under harsh operating conditions. Here, a partial-oxide-coating strategy is proposed to stabilize metal nanocrystals against sintering and meanwhile enable an effective exposure of active sites. As a proof-of-concept, controlled partial silica coating of colloidally prepared Pd0.82 Ni0.18 nanocrystals with the size of 8 nm is demonstrated. This partially coated catalyst exhibits excellent activity, selectivity, and stability, outperforming its counterparts with fully coated and supported structures, in reverse water gas shift (RWGS) catalysis particularly at high operating temperatures. This study opens a new avenue for the exploration of colloidal metal nanocrystals in high-temperature heterogeneous catalysis
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a colloidal nanocrystals
|
650 |
|
4 |
|a high-temperature heterogeneous catalysis
|
650 |
|
4 |
|a metal nanocrystals
|
650 |
|
4 |
|a reverse water gas shift
|
650 |
|
4 |
|a stabilization
|
700 |
1 |
|
|a Feng, Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Chaoran
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Rui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Mengqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Rui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Di
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Binhang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Le
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 6 vom: 24. Feb., Seite e2108727
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:6
|g day:24
|g month:02
|g pages:e2108727
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202108727
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 6
|b 24
|c 02
|h e2108727
|